29 research outputs found

    Foraging in marine habitats increases mercury concentrations in a generalist seabird

    Get PDF
    Methylmercury concentrations vary widely across geographic space and among habitat types, with marine and aquatic-feeding organisms typically exhibiting higher mercury concentrations than terrestrial-feeding organisms. However, there are few model organisms to directly compare mercury concentrations as a result of foraging in marine, estuarine, or terrestrial food webs. The ecological impacts of differential foraging may be especially important for generalist species that exhibit high plasticity in foraging habitats, locations, or diet. Here, we investigate whether foraging habitat, sex, or fidelity to a foraging area impact blood mercury concentrations in western gulls (Larus occidentalis) from three colonies on the US west coast. Cluster analyses showed that nearly 70% of western gulls foraged primarily in ocean or coastal habitats, whereas the remaining gulls foraged in terrestrial and freshwater habitats. Gulls that foraged in ocean or coastal habitats for half or more of their foraging locations had 55% higher mercury concentrations than gulls that forage in freshwater and terrestrial habitats. Ocean-foraging gulls also had lower fidelity to a specific foraging area than freshwater and terrestrial-foraging gulls, but fidelity and sex were unrelated to gull blood mercury concentrations in all models. These findings support existing research that has described elevated mercury levels in species using aquatic habitats. Our analyses also demonstrate that gulls can be used to detect differences in contaminant exposure over broad geographic scales and across coarse habitat types, a factor that may influence gull health and persistence of other populations that forage across the land-sea gradient

    Across borders: External factors and prior behaviour influence North Pacific albatross associations with fishing vessels

    Get PDF
    Understanding encounters between marine predators and fisheries across national borders and outside national jurisdictions offers new perspectives on unwanted interactions to inform ocean management and predator conservation. Although seabird–fisheries overlap has been documented at many scales, remote identification of vessel encounters has lagged because vessel movement data often are lacking. Here, we reveal albatrosses–fisheries associations throughout the North Pacific Ocean. We identified commercial fishing operations using Global Fishing Watch data and algorithms to detect fishing vessels. We compiled GPS tracks of adult black-footed Phoebastria nigripes and Laysan Phoebastria immutabilis albatrosses, and juvenile short-tailed albatrosses Phoebastria albatrus. We quantified albatrosses-vessel encounters based on the assumed distance that birds perceive a vessel (≤30 km), and associations when birds approached vessels (≤3 km). For each event we quantified bird behaviour, environmental conditions and vessel characteristics and then applied Boosted Regression Tree models to identify drivers and the duration of these associations. In regions of greater fishing effort short-tailed and Laysan albatrosses associated with fishing vessels more frequently. However, fishing method (e.g. longline, trawl) and flag nation did not influence association prevalence nor the duration short-tailed albatrosses attended fishing vessels. Laysan albatrosses were more likely to approach longer vessels. Black-footed albatrosses were the most likely to approach vessels (61.9%), but limited vessel encounters (n = 21) prevented evaluation of meaningful explanatory models for this species of high bycatch concern. Temporal variables (time of day and month) and bird behavioural state helped explain when short-tailed albatrosses were in close proximity to a vessel, but environmental conditions were more important for explaining interaction duration. Laysan albatrosses were more likely to associate with vessels while searching and during the last 60% (by time) of their trips. Our results provide specific species–fisheries insight regarding contributing factors of high-risk associations that could lead to bycatch of albatrosses within national waters and on the high seas. Policy implications. Given the availability of Global Fishing Watch data, our analysis can be applied to other marine predators—if tracking data are available—to identify spatio-temporal patterns, vessel specific attributes and predator behaviours associated with fishing vessel associations, thus enabling predictive modelling and targeted mitigation measures

    Quantifying annual spatial consistency in chick-rearing seabirds to inform important site identification

    Get PDF
    Animal tracking has afforded insights into patterns of space use in numerous species and thereby informed area-based conservation planning. A crucial consideration when estimating spatial distributions from tracking data is whether the sample of tracked animals is representative of the wider population. However, it may also be important to track animals in multiple years to capture changes in distribution in response to varying environmental conditions. Using GPS-tracking data from 23 seabird species, we assessed the importance of multi-year sampling for identifying important sites for conservation during the chick-rearing period, when seabirds are most spatially constrained. We found a high degree of spatial overlap among distributions from different years in most species. Multi-year sampling often captured a significantly higher portion of reference distributions (based on all data for a population) than sampling in a single year. However, we estimated that data from a single year would on average miss only 5 % less of the full distribution of a population compared to equal-sized samples collected across three years (min: −0.3 %, max: 17.7 %, n = 23). Our results suggest a key consideration for identifying important sites from tracking data is whether enough individuals were tracked to provide a representative estimate of the population distribution during the sampling period, rather than that tracking necessarily take place in multiple years. By providing an unprecedented multi-species perspective on annual spatial consistency, this work has relevance for the application of tracking data to informing the conservation of seabirds

    Quantifying annual spatial consistency in chick-rearing seabirds to inform important site identification

    Get PDF
    Animal tracking has afforded insights into patterns of space use in numerous species and thereby informed area-based conservation planning. A crucial consideration when estimating spatial distributions from tracking data is whether the sample of tracked animals is representative of the wider population. However, it may also be important to track animals in multiple years to capture changes in distribution in response to varying environmental conditions. Using GPS-tracking data from 23 seabird species, we assessed the importance of multi-year sampling for identifying important sites for conservation during the chick-rearing period, when seabirds are most spatially constrained. We found a high degree of spatial overlap among distributions from different years in most species. Multi-year sampling often captured a significantly higher portion of reference distributions (based on all data for a population) than sampling in a single year. However, we estimated that data from a single year would on average miss only 5 % less of the full distribution of a population compared to equal-sized samples collected across three years (min: −0.3 %, max: 17.7 %, n = 23). Our results suggest a key consideration for identifying important sites from tracking data is whether enough individuals were tracked to provide a representative estimate of the population distribution during the sampling period, rather than that tracking necessarily take place in multiple years. By providing an unprecedented multi-species perspective on annual spatial consistency, this work has relevance for the application of tracking data to informing the conservation of seabirds

    Do Parents Rock and Roll All Night? Temporal Egg Turning Behavior In Long-Lived Seabirds

    No full text
    Egg turning behavior across the course of incubation is vital for proper avian embryonic development and hatching success, but temporal associations between egg attendance patterns and turning behaviors have not been studied in wild birds. Here, I use miniature, self-contained data loggers to characterize egg turning rates and angle changes of eggs in two wild, long-lived seabird species: western gulls (Larus occidentalis) and Laysan albatrosses (Phoebastria immutabilis). Egg turning behaviors were examined temporally across early, middle, and late incubation periods and also grouped by 24-h periods and diurnal cycles. Results indicate 1) egg turning rates and angle changes vary according to diurnal cycles and incubation day length in each species; 2) egg turning behaviors remain similar throughout incubation, resulting in a consistent environment for developing chicks; 3) using differing temporal scales to examine egg turning reveals changes in such behaviors, and 4) egg turning rates appear to be highly conserved between species despite large differences in egg size and lack of close phylogenies, whereas angle changes exhibit greater variation between species. Overall, differences in incubation behaviors between species may be subtle but impactful and, as such, call for consistent methodologies and the ability to examine incubation patterns over small, species-relevant time scales

    Seabirds as regional biomonitors of legacy toxicants on an urbanized coastline

    Get PDF
    Seabirds are often cited as sentinels of the marine environment, but are rarely used in traditional ocean and coastal contaminant monitoring. Four classes of persistent organic pollutants (POPs, n=68) and three trace elements (mercury, selenium, and arsenic) were measured in the eggs of California least terns (Sterna antillarum browni), caspian terns (Hydroprogne caspia), double-crested cormorants (Phalacrocorax auritus), and western gulls (Larus occidentalis) that nest in the Southern California Bight. Building on a periodic five year regional monitoring program, we measured contaminant exposure and assessed the utility of seabirds as regional contaminant biomonitors. We found that the eggs of larger,more piscivorous species generally had the highest concentrations of POPs and trace elements while California least terns had the lowest concentrations, except for mercury which was higher in least terns. As expected, DDT concentrations were elevated near the Palos Verdes Superfund site. However, we also detected a previously unknown latitudinal pattern in PBDE concentrations in least terns. POP congener profiles also confirmed differences in contamination in urban least tern colonies closest to urban centers. Though toxicants were at detectable levels across species and sites, concentrations were below those known to cause adverse effects in avian taxa and are steady or declining compared to previous studies in this region. Our results suggest that regional seabird monitoring can inform site-specific remediation and support management and protection of regionally-threatened wildlife and coastal systems. Integration of seabird contaminant data with traditional sediment, water, bivalve and fish monitoring is needed to further our understanding of exposure pathways and food web contaminant transfer

    Data loggers in artificial eggs reveal that egg-turning behavior varies on multiple ecological scales in seabirds

    No full text
    In most avian species, egg-turning behavior during incubation is vital for proper embryonic development and hatching success. However, changes in turning behaviors are rarely studied across different temporal scales (e.g., day–night or across incubation phases), though the timing of incubation behaviors affects reproductive success. We used data loggers encapsulated in artificial eggs to measure turning rates and angle changes of eggs in Western Gull (Larus occidentalis) and Laysan Albatross (Phoebastria immutabilis) nests. We examined diurnal and daily cycles in egg-turning behaviors across early, middle, and late incubation phases. Our results indicate that (1) egg-turning behaviors remain similar throughout incubation, resulting in a consistent environment for developing chicks; (2) egg-turning rates and angle changes vary according to diurnal cycles and day length in each species; and (3) egg-turning rates, but not angle changes, were similar between species. Egg-turning behaviors may vary among species according to seasonality and geography, and using consistent methodologies to measure egg turning will further clarify the role of egg turning in avian life history and ecology

    As the Egg Turns: Monitoring Egg Attendance Behavior in Wild Birds Using Novel Data Logging Technology

    No full text
    Egg turning is unique to birds and critical for embryonic development in most avian species. Technology that can measure changes in egg orientation and temperature at fine temporal scales (1 Hz) was neither readily available nor small enough to fit into artificial eggs until recently. Here we show the utility of novel miniature data loggers equipped with 3-axis (i.e., triaxial) accelerometers, magnetometers, and a temperature thermistor to study egg turning behavior in free-ranging birds. Artificial eggs containing egg loggers were deployed in the nests of three seabird species for 1–7 days of continuous monitoring. These species (1) turned their eggs more frequently (up to 6.5 turns h−1) than previously reported for other species, but angular changes were often small (1–10° most common), (2) displayed similar mean turning rates (ca. 2 turns h−1) despite major differences in reproductive ecology, and (3) demonstrated distinct diurnal cycling in egg temperatures that varied between 1.4 and 2.4°C. These novel egg loggers revealed high-resolution, three-dimensional egg turning behavior heretofore never measured in wild birds. This new form of biotechnology has broad applicability for addressing fundamental questions in avian breeding ecology, life history, and development, and can be used as a tool to monitor birds that are sensitive to disturbance while breeding

    Population-level plasticity in foraging behavior of western gulls (\u3ci\u3eLarus occidentalis\u3c/i\u3e)

    No full text
    Background Plasticity in foraging behavior among individuals, or across populations may reduce competition. As a generalist carnivore, western gulls (Larus occidentalis) consume a wide range of marine and terrestrial foods. However, the foraging patterns and habitat selection (ocean or land) of western gulls is not well understood, despite their ubiquity in coastal California. Here, we used GPS loggers to compare the foraging behavior and habitat use of western gulls breeding at two island colonies in central California. Results Gulls from offshore Southeast Farallon Island (SFI; n = 41 gulls) conducted more oceanic trips (n = 90) of shorter duration (3.8 ± 3.3 SD hours) and distance (27.1 ± 20.3 km) than trips to the mainland (n = 41) which were nearly 4 times longer and 2 times farther away. In contrast, gulls from coastal Año Nuevo Island (ANI; n = 20 gulls) foraged at sites on land more frequently (n = 103) but trip durations (3.6 ± 2.4 h) and distances (20.8 ± 9.4 km) did not differ significantly from oceanic trips (n = 42) where trip durations were only slightly shorter (2.9 ± 2.7 h) and equidistant (20.6 ± 12.1 km). Gulls from both colonies visited more sites while foraging at sea but spent significantly longer (3–5 times) durations at each site visited on land. Foraging at sea was also more random compared to foraging trips over land where gulls from both colonies visited the same sites on multiple trips. The total home range of gulls from SFI (14,230 km2) was 4.5 times larger than that of gulls from ANI, consistent with greater resource competition resulting from a larger abundance of seabirds at SFI. Conclusions Population-level plasticity in foraging behavior was evident and dependent on habitat type. In addition, gulls from SFI were away foraging longer than gulls from ANI (22% vs. 7.5%, respectively), which impacts the defense of territories and attempts at nest predation by conspecifics. Our results can be used to explain lower chick productivity at SFI, and can provide insight into increased gull activity in urban areas
    corecore