2,515 research outputs found

    <i>Chirotherium barthii </i>Kaup 1835 from the Triassic of the Isle of Arran, Scotland

    Get PDF
    The mould of a track from SE Arran, and several in situ trackways and individual tracks, as well as a partial trackway on a loose block of Triassic sandstone, from western Arran, represent the first verifiable fossil tracks of Chirotherium from the Triassic of Scotland and support a Scythian (Lower Triassic) age for the base of the Auchenhew Beds. The grouping of the I–IV toes with toe V behind and lateral to the group is characteristic of Chirotherium-like tracks. A comparison with European and American Triassic trackways suggests that the tracks belong to the species Chirotherium barthii Kaup, 1835, first described from Hildburghausen, Germany

    Multi-layer light-weight protective coating and method for application

    Get PDF
    A thin, light-weight, multi-layer coating is provided for protecting metals and their alloys from environmental attack at high temperatures. A reaction barrier is applied to the metal substrate and a diffusion barrier is then applied to the reaction barrier. A sealant layer may also be applied to the diffusion barrier if desired. The reaction barrier is either non-reactive or passivating with respect to the metal substrate and the diffusion barrier. The diffusion barrier is either non-reactive or passivating with respect to the reaction barrier and the sealant layer. The sealant layer is immiscible with the diffusion barrier and has a softening point below the expected use temperature of the metal

    Oxidation characteristics of Beta-21S in air in the temperature range 600 to 800 C

    Get PDF
    The metastable beta-Ti alloy Beta-21S, Ti-15Mo-2.7Nb-3Al-0.2Si (weight percent), has been proposed as a candidate for use in metal matrix composites in future hypersonic vehicles. The present study investigated the oxidation behavior of Beta-21S over the temperature range 600 C to 800 C. Oxidation weight gain was evaluated using thermogravimetric analysis. Oxidized specimens were evaluated using x ray diffraction techniques, scanning electron microscopy, energy dispersive x ray analysis, and electron microprobe analysis to identify oxidation products and evaluate oxidation damage to the alloy

    Oxidation characteristics of Ti-14Al-21Nb ingot alloy

    Get PDF
    Static oxidation kinetics of Ti14Al21Nb (wt pct) ingot alloy were studied in air over the temperature interval of 649 to 1093 C in a thermogravimetric apparatus. The oxidation products were characterized by x ray diffraction, electron microprobe analysis, energy dispersive x ray analysis, and Auger electron spectroscopy. Cross-sections of the oxidized samples were also examined using light and scanning electron microscopy. The oxidation rate was substantially lower than the conventional alloys of titanium, but the kinetics displayed a complex behavior involving two or more oxidation rates depending on the temperature and duration of exposure. The primary oxide formed was TiO2, but this oxide was doped with Nb. Small amounts of Al2O3 and TiN were also present in the scale. Diffusion of oxygen into the alloy was observed and the diffusivity seemed to be dependent on the microstructure of the metal. A model was presented to explain the oxidation behavior of the alloy in terms of the reduction in the oxygen diffusivity in the oxide caused by the modification of the defect structure of TiO2 by Nb ions

    Mechanical properties of coated titanium Beta-21S after exposure to air at 700 and 800 C

    Get PDF
    Mechanical properties of Beta-21S (Ti-15Mo-3Al-2.7Nb-0.2Si, wt percent) with glass, aluminide, and glass-on-aluminide coatings less than 3-micron thick were studied. Coatings were deposited by sol-gel processing or electron-beam evaporation onto 4.5-mil (113-micron) thick Beta-21S sheet from which, after oxidizing in air at 700 or 800 C, tensile test specimens were machined. Plastic elongation was the most severely degraded of the tensile properties; the glass-on-aluminide coatings were the most effective in preventing degradation. It was found that oxygen trapping by forming oxides in the coating, and reactions between the coatings and the Beta-21S alloy played significant roles

    The Eastern Belted Kingfisher, Megaceryle Alcyon Alcyon (Linnaeus), in Relation to Fish Management

    Full text link
    The kingfisher is the most common and universally distributed bird predator of fish in Michigan. Its principal migration routes are along the Great Lakes shores. Nesting territories are established along streams and lake shores; they are usually larger in the former than in the latter. The kingfisher is diurnal in its feeding with three peaks of activity–morning, afternoon, and early evening. First feeding of fledgelings is on insects; this food is followed by crayfish, then by fish. Fish eaten average about 2.3 inches in length and at fish hatcheries are mostly the species being propagated. On natural waters the food consists mostly of non‐food and non‐game fishes and crayfish. Predation pressure varies with season and within season according to weather, nest distribution, and environmental suitabliity of waters for feeding activity. Because of their feeding proclivities, it is undesirable to have kingfishers about fish hatcheries and rearing stations. At present, general control on natural waters is not biologically justified.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142096/1/tafs0097.pd

    Primary and secondary controls on reservoir quality: relationships between lithofacies and the development of deformation bands

    Get PDF
    Primary sedimentological processes in mixed eolian-fluvial systems can result in lithological variability at the sub-seismic scale. This variation in genetic origin has a direct control on the porosity and permeability of a body of sediment, with variations in lithofacies types, their assemblages and contacts responsible for creating fluid pathways or baffles. Post-depositional near-surface and deep process diagenesis affects original porosity and permeabilities through mineral dissolution and re-precipitation, and the generation of stress induced fractures. Examination of bedrock exposure and drillcore from the depositionally heterogeneous Triassic Sherwood Sandstone of north-west England demonstrates that there is a strong facies control on the presence and type of secondary processes, namely in the form of deformation bands. This is despite the entire range of lithofacies being subject to the same regional and local stresses. The mixed eolian-fluvial Sherwood Sandstone Group exhibits a wide range of facies types which allows a good insight in to those most susceptible to deformation band formation. Preliminary work indicates that the eolian grainfall and grainflow facies types are at most risk of being host to deformation bands above all other facies types (both eolian and fluvial). This is significant as both of these facies have very good permeabilities in excess of 6000 mD (millidarcy), whilst the deformation bands have significantly less ranging from 0.1-10 mD. The deformation bands are also identified to occur in a range of styles that vary from: i) isolated thin (1-2 mm thick) individual seams, ii) complex conjugate interlocking sets, and iii) chaotic thick amalgamations of multiple deformation bands ranging from 5-120 cm thick. Each of the deformation types has been constrained in three dimensions and a range of idealised conceptual models are presented that indicate the potential of effects on reservoir quality
    • 

    corecore