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Abstract

Mechanical properties of Beta-21S (Ti-15Mo-3A1-2.7Nb-0.2Si, wt%) with glass, alu-

minide, and glass-on-aluminide coatings less than 3-#m thick were studied. Coatings

were deposited by sol-gel processing or electron-beam evaporation onto 4.5-mil (l13-#m)

thick Beta-21S sheet from which, after oxidizing in air at 700 or 800°C, tensile test spec-

imens were machined. Plastic elongation was the most severely degraded of the tensile

properties; the glass-on-aluminide coatings were the most effective in preventing degrada-

tion. It was found that oxygen trapping by forming oxides in the coating, and reactions

between the coatings and the Beta-21S alloy played significant roles.



Introduction

Surface oxide formation and oxygen dissolution (to form oxygen interstitials in the alloy)

are concurrent oxidation processes in titanium alloys. At low temperatures, oxide forma-

tion is the dominant process and the oxide that forms is protective, corrosion resistant,

and inert to many forms of chemical attack. At higher temperatures (> 400°C) oxygen

dissolution increases in importance because it comes to dominate the oxidation kinetics

(ref 1 & 2), gives rise to interstitial hardening, and stabilizes the alpha phase. The latter

factors have a considerable influence on the mechanical properties of the alloy including

tensile strength, ductility, and elastic modulus. Ductility is the first and most seriously

affected of these properties, and its loss can be taken as a sign that oxygen interstitials
have formed.

The role of nitrogen, during oxidizing exposures in air, is currently uncertain: nitrogen

is known to behave similarly to oxygen and with similar effects on the ductility of the

alloy, but whether it reacts with titanium alloys in the presence of oxygen is not clear.

In any case, to prevent embrittlement of the alloy, interstitials of both elements must be

kept from forming, and this can be accomplished with coatings by two approaches: 1)

by blocking transport across the coating or 2) by trapping these elements as oxides or

nitrides within the coating.

Beta-21S (Ti-15Mo-3A1-2.7Nb-0.2Si, wt%) is a metastable beta titanium alloy and is

considered, on the basis of fabricability, strength, density, and oxidation resistance, to be

a promising candidate for aerospace applications. The oxidation resistance of Beta-21S

is significantly better than Ti-15V-3Cr-3Sn-3AI and somewhat better than commercial-

purity (cp) titanium (ref 3).

Beta-21S is now being evaluated for use in hypersonic-vehlcle airframes as a composite-

matrix material. This would involve frequent short-duration exposures to air at 816"C

(1500°F) where oxidation occurs rapidly (ref 4). Tile need for coating Beta-21S when

used in this environment is evident, and it is of interest to learn which coating strategies

will be most successful. Glass coatings, which block transport across the coating, are

representative of one strategy, and aluminide coatings, which trap oxygen by forming

aluminum oxide, are representative of a second strategy. In this paper, the effect of glass

and aluminide coatings, singly and in combination, on the oxidation and mechanical

properties of Beta-21S is reported.

Procedure

Mill-annealed, 4.5-mil Beta-21S sheet (see chemical analyses in Table I) was cut into

1.5xb-in. panels with the longer dimension parallel to the rolling direction of the sheet.

The panels were cleaned with a detergent, rinsed with acetone followed by methanol,

blotted dry, and baked for 30 min at 90°C.

The aluminide coatings were formed by depositing 1 #m of aluminum by electron-beam

evaporation, and converting it to TiAl3 by annealing for 8 h at 621°C in a vacuum furnace.

This heat treatment produced in the alloy a basket-weave alpha-plus-beta microstructure.

The glass coatings were silicophosphates applied by a sol-gel process (ref 5) and cured for



Table I. ChemicalAnalysesof the Titanium Beta 21-SMaterial

Sample Fe Mo A1 Nb Si C O N H

Ingot, Top* 0.088 16.8 3.18 3.00 0.16 0.018 0.127 0.005 -
Ingot, Bottom* 0.120 15.8 2.95 2.88 0.23 0.026 0.114 0.005 23ppm

As-ReceivedSheet 0.130t 15.3t 2.90t 2.97t 0.16t 0.035:_0.148:_0.0385103ppm§

* Ingot chemistryreported by TIMET for HeatG-1664
t By direct-current plasma(DCP)
:_By combustionthermal-conductivity
§ By combustionthermal-conductivity

a total time of 40min at 650°C.The processproducedin the alloy a very fine, strongly
orientedalpha-plus-betamicrostructure.

The glass-on-aluminidecoatings were formed by applying glass coatings to completed

aluminide coatings. The resulting microstructure of the alloy was identical to that of the

aluminide coated material.

Continuous thermal exposures were conducted in air at atmospheric pressure by intro-

ducing the specimens into furnaces preheated to the test temperature, and by air cooling

at the end of the test exposure to mininfize the time at temperatures where the omega

phase might form.

After exposure, three tensile-test specimens were cut from each panel and machined to

the specifications of ASTM Standard E8 (ref 6): the width of the reduced section was

0.250 in. and the length was 1.25 in.

The specimens were loaded in tension until failure occurred. Back-to-back extensometers

with a 1.000 in. gage length were used to measure strain. For determining yield, an

0.005 in./min cross-head-deflection rate was used until 5% total strain when the cross-

head-deflection rate was increased to 0.05 in./min for the remainder of the test. Yield

strengths were determined by the 0.2% offset method and elastic moduli by linear regres-

sion over the portion of the stress-strain curve between 0 and 0.5% total strain. Metal-

lurgical specimens were prepared by sectioning the exposed foils and mounting them in a

thermosetting medium. The metallurgical specimens were attack-polished using Kroll's

reagent and a coloidal-silica slurry.

Results and Discussion

Reduced oxygen weight gains and retained mechanical properties are benefits that a

coating system is expected to provide. Ill a general sense, these two are related, but the

degree of correlation depends on the coating type and the alloy's thermal stability. If the

coating actively forms oxides, large weight gains may not imply degradation of properties.

If the alloy's thermal stability is poor, changes unrelated to oxidation may be observed

in the mechanical properties.

Oxidation Effects on Uncoated Beta-21S

Uncoated Beta-21S was tested to establish a baseline for evaluating the coatings and

for distinguishing between oxidation and thermal exposure effects. In figure 1 axe the
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Figure 1. - Room-temperature mechanical property data for uncoated Beta-21S

after 12 h exposure to air. The vacuum data (ref 3) shows the effect

of thermal exposure, and the difference between air and vacuum

shows the effect of oxidation.

room temperature ultimate tensile strengths (UTS), yield strengths (YS), and plastic

elongations for 4.5-mil sheet, initially in the beta-annealed condition, after 12 h in air

(this study) or I0 h in vacuum (ref 3).

At 500"C, the agreement between the vacuum and air data showed that oxidation in

this exposure was not significant. At 600°C, the UTS and YS were almost equal for the

vacuum and air exposures, but the difference in plastic elongation indicates a significant

loss of ductility caused by oxidation. There was a complete loss of ductility and a con-

siderable reduction in UTS and YS at 7000C due to oxidation. At 800°C, the material

exposed in air was very fragile: all specimens broke while being prepared for testing.

Effect of Coatings on Ultimate Tensile Strengtl_l

Except for cases of complete coating failure, the UTS of coated Beta-21S was relatively

insensitive to oxidizing exposure (see figure 2). A small decrease in UTS, seen in all

coated material during the first few hours of exposure, was an aging response associated

with changes observed in the microstructure.

The UTS of the glass-coated material was consistently higher than the UTS of aluminide-

coated or glass-on-aluminide-coated material: This was attributed to the very fine, highly

oriented alpha-plus-beta microstructure of the glass-coated material.
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Figure 2.- Room temperature ultimate tensile strengths for coated 4.5-mil

Beta-21S sheet after air exposures.

The only serious loss of strength was in the aluminide-coated material at 800°C after 24

and 48 h where the material proved to be very fragile: all of the specimens broke while

being prepared for testing.

Weight .Gains and Plastic Elongation at 700°C

The oxygen weight gains at this temperature for all coated materials were small (see fig-

ure 3). All of the coated material showed significantly less weight gain than the uncoated

material: after 12 h there was at least an order of magnitude difference. The low weight

gains imply that all of the coatings were effective in limiting the entry of oxygen (and

nitrogen) from the atmosphere.

While the precise dependence of plastic elongation on oxygen weight gain had not been

established for 4.5-mil Beta-21S sheet, prior experience indicated that weight gains of

less than 70 #g/cm 2 should have only a minor effect. Consequently, it was expected

that the ductility of all the coated material at 700°C would not be excessively degraded.

In fact the plastic elongation of material with aluminide or glass-on-aluminide coatings

were consistently high, but the plastic elongation of material with glass coatings steadily

declined (see figure 4). This decline was attributed to oxygen interstitials generated by

reactions between the oxygen-rich glass and the titanium alloy.

Weight Gains and Plastic Elongation at 800°C

The oxygen weight gains for the glass asld glass-on-aluminide coatings exposed at 800°C
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Figure 4. - Roorn-temperature ductility after 700°C air exposures of

coated Beta-21S.
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20 pm

Figure 7. - Scanning electron micrographs of coated Beta-21S in cross section

alter 12 h at 800°C: a) glass coated; b) aluminide coated; c) glass-
on-aluminide coated.

were small, but the weight gain for thealuminide coating, after an initial lag, closely

parMleied the weight gain of the uncoated material (see figure 5): This suggested that

the glass and glass-on-alumlnide coatings were effective at this temperature, but that the

aluminide coating was not protective. The glass-on-aluminide coating did very well: even

after 48 h the oxygen weight gain was less than 35 #g/cm 2. If it is assumed that this

represents oxygen permeation through the 1.5-#m-thick glass layer, the oxygen weight

gain corresponds to an oxygen diffusivity of roughly 2.4 x 10 -14 cm2/sec, which is within

an order of magnitude of the oxygen self-diffusion coefficient for fused quartz (3.5 ×

10 -15 cm2/sec, ref 7).

The plastic elongations (see figure 6) confirmed, for the most part, the oxidation damage

observed in the oxygen weight gains. However, the ductility of the aluminide coated

material after 12 h is surprisingly high in light of its very large weight gain. This leads

to the conclusion that most of the weight gain went into oxide formation, and that the

portion that went into interstitial formation was actually quite low. In contrast, the

ductility of the glass coated material was lower than weight gain would indicate. This

leads to the conclusion that more interstitials were formed than weight gain accounted

for._ ]s expected thaf-where the:glass_and a]loy_w_ ;n _recf confact, t_hat the glass

underwent a reduction reaction due to the high alTinity of the alloy for oxygen. That

oxygen then entered thealloy _ interstitials contributing to the degradation of mechanical

properties.

The plastic elongations of the glass-on-aluminide coated material were much better than
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Figure 8. - Room temperature ductility after air exposures of coated Beta-21S.

that of the other coated materials, and in fact, rivaled those of Beta-21S vacuum annealed

at this temperature (ca 16%, rcf 3). This was attributed to the more complete exclu-

sion of oxygen interstitials by the glass-on-alumirfide coating. The micrographs in figure

7 reinforce this suggestion. At 800°C, it is expected that some alpha will be present.

However, since oxygen is an alpha stabilizer, the presence of oxygen should cause addi-

tional alpha to form. The amounts of alpha are 7 vol% for the glass-on-aluminide-coated

material, 10 vol% for the aluminide-coated material, and 21 vol% for the glass-coated

material, indicating that the glass-on-aluminide-coated material has the least oxygen in
solid solution.

The relationship between oxygen weight gain and plastic elongation is summarized for

all the materials tested in figure 8. Grouped in one shaded region are cases where loss

of ductility was observed at unexpectedly low oxygen weight gains. This was attributed

to interstitials formed by reactions between the glass and the alloy. Grouped in the

second shaded region are the cases where ductility was retained at unexpectedly large

oxygen weight gains. This was attributed to competitive oxide formation preventing

the formation of interstitials. All the glass-coated materials fall into group one and

the aluminide-coated materials fall mostly in group two; which is reasonable given the

function of these coatings.

The glass layer, in the glass-on-aluminide coatings, apparently blocks oxygen transport.

If the aluminide layer were functioning as an oxygen trapping layer, then the glass-on-

aluminlde coatings would be grouped in figure 8 with the aluminide coatings. Actually,

the glass-on-aluminide coatings behave more like the glass coatings: this suggests that



the function of the aluminide layer is that of a reaction barrier.

Concluding Remarks

The results reported in this paper are significant in that they demonstrate the potential

for practical coating systems that are very thin (< 3-#m thick), exclude oxygen from

the alloy, and prevent unacceptable degradation of the mechanical properties. As a

consequence, these coatings may find application in titanium alloy aerospace structures

which are subject to high temperatures in service.

It was shown that uncoated Beta-21S, 4.5-nfil sheet was embrittled at 700 and 800°C

after only 12 h of exposure, but embrittlement was prevented by glass, aluminide, and

glass-on-aluminide coatings less than 3-_um thick. The glass-on-aluminide coating was

the most successful with greater than 15% plastic elongation retained after 24 h at 800°C
in air.

The glass and aluminide coatings functioned as protective layers in different ways: the

glass by blocking transport, and the aluminlde by trapping oxygen in the form of alu-

minum oxide. When used together in the glass-on-aluminide coating, the role of the

aluminide appeared to be that of a barrier preventing interstitial-generating reactions

between the glass and the Beta-21S alloy.
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