125 research outputs found

    The Dilemma of Foraging Herbivores: Dealing with Food and Fear

    Get PDF
    For foraging herbivores, both food quality and predation risk vary across the landscape. Animals should avoid low-quality food patches in favour of high-quality ones, and seek safe patches while avoiding risky ones. Herbivores often face the foraging dilemma, however, of choosing between high-quality food in risky places or low-quality food in safe places. Here, we explore how and why the interaction between food quality and predation risk affects foraging decisions of mammalian herbivores, focusing on browsers confronting plant toxins in a landscape of fear. We draw together themes of plant–herbivore and predator–prey interactions, and the roles of animal ecophysiology, behaviour and personality. The response of herbivores to the dual costs of food and fear depends on the interplay of physiology and behaviour. We discuss detoxification physiology in dealing with plant toxins, and stress physiology associated with perceived predation risk. We argue that behaviour is the interface enabling herbivores to stay or quit food patches in response to their physiological tolerance to these risks. We hypothesise that generalist and specialist herbivores perceive the relative costs of plant defence and predation risk differently and intra-specifically, individuals with different personalities and physiologies should do so too, creating individualised landscapes of food and fear. We explore the ecological significance and emergent impacts of these individual-based foraging outcomes on populations and communities, and offer predictions that can be clearly tested. In doing so, we provide an integrated platform advancing herbivore foraging theory with food quality and predation risk at its core

    Variation in syn-subduction sedimentation patterns from inner to outer portions of deep-water fold and thrust belts: examples from the Hikurangi subduction margin of New Zealand

    Get PDF
    The structure and distribution of accommodation in fold and thrust belts vary both laterally and longitudinally. Here we integrate gravity, bathymetry and 2D seismic datasets to investigate the structural and stratigraphic variation in the southern part of the Hikurangi subduction wedge, onshore and offshore North Island, New Zealand. Three morphostructural portions are recognized: The inner portion demonstrates reactivation of inherited structures, producing thick-skinned deformation. Pre-subduction rocks are represented by kilometres of acoustically chaotic seismofacies. Thick-skinned deformation and readily deformable substrate lead to the development of wide trench-slope sub-basins, infilled with >5 km of syn-subduction sediments. The mid portion typically demonstrates thrust faults with connections to deeper structures, leading to the development of an imbricate system with asymmetrical sub-basins typically <5 km thick developed on the back-limb of thrust related folds. An antiformal stack marks the transition from the thick-skinned interior of the basin to the thin-skinned accretionary prism. Beyond this, the relatively non-deformed outer portion demonstrates frontal folds, propagating thrusts and up to 3 km thickness of syn-subduction strata. Structural variation across the subduction wedge controls the generation of accommodation with implications for sediment distribution within fold and thrust belts and for petroleum system development

    Lateral, longitudinal, and temporal variation in trench-slope basin fill: examples from the Neogene Akitio sub-basin, Hikurangi Margin, New Zealand

    Get PDF
    The fill of trench-slope basins is complex, varying temporally, laterally, and longitudinally. New data from the Neogene stratigraphy of the Akitio Sub-basin, Wairarapa, are presented to investigate such fill variation. The preserved basin fill spans an area 70 km long by 10 km wide, representing deposits from a trench-slope basin. Integration of sedimentological, micropalaeoentological, and geological mapping data charts basin fill evolution. Over 15 km of strata were logged, defining 17 lithofacies associations, which were mapped across the basin; these are interpreted to represent both shallow and deep-water environments. The deep-water strata show a temporal evolution from ponded turbidite deposition, to a period of basin spill via conduits connecting to downstream basins, development of aggradational channel-levees, and finally unconfined submarine fan deposition. Shallow marine deposits mostly developed on the up-dip basin margin occur contemporaneously with basinal mass-transport deposits, and in association with the growth of basin bounding structural ridges. Comparison with the evolution of the offshore, actively filling Akitio Trough highlights controls on trench-slope basin fill: a first-order influence of external controls, e.g. tectonism to create the basin; a second-order progression from under- to overfilled; and third-order lateral variation reflecting autogenic process and the effects of local structures on seafloor gradients. These factors combine to vary sedimentation in trench-slope-basins spatially and temporally

    Urbanisation and wing asymmetry in the western honey bee (Apis mellifera, Linnaeus 1758) at multiple scales

    Get PDF
    Changes in the mean and variance of phenotypic traits like wing and head morphology are frequently used as indicators of environmental stress experienced during development and may serve as a convenient index of urbanization exposure. To test this claim, we collected adult western honey bee (Apis mellifera Linnaeus 1758, Hymenoptera, Apidae) workers from colonies located across an urbanization gradient, and quantified associations between the symmetries of both wing size and wing shape, and several landscape traits associated with urbanization. Landscape traits were assessed at two spatial scales (three km and 500 m) and included vegetation and anthropogenic land cover, total road length, road proximity and, population and dwelling density. We then used geometric morphometric techniques to determine two wing asymmetry scores—centroid size, a measure of wing size asymmetry and Procrustes distance, a measure of wing shape asymmetry. We found colony dependent differences in both wing size and shape asymmetry. Additionally, we found a negative association between wing shape asymmetry and road proximity at the three km buffer, and associations between wing shape asymmetry and road proximity, anthropogenic land cover and vegetation cover at the 500 m buffer. Whilst we were unable to account for additional variables that may influence asymmetry including temperature, pesticide presence, and parasitism our results demonstrate the potential usefulness of wing shape asymmetry for assessing the impact of certain landscape traits associated with urbanization. Furthermore, they highlight important spatial scale considerations that warrant investigation in future phenotypic studies assessing urbanization impact

    Plant volatiles are a salient cue for foraging mammals : elephants target preferred plants despite background plant odour

    Get PDF
    To forage nonrandomly, animals must discriminate among food items. Foods differ in look, smell and taste, providing cues for foragers with appropriate senses. Irrespective of the sensory modality, however, foragers can only use cues effectively if they can detect sensory signals above background noise. Recent evidence shows that foraging mammalian herbivores can detect plant odours, but their capacity to select preferred plants in a noisy olfactory background is unknown. Using choice trials, we tested whether the African elephant, Loxodonta africana, uses plant odour as a salient cue despite increasingly complex and challenging background odours. We first established their preference for familiar plant species. We then tested their capacity to discriminate and select preferred plants based on odour alone. We found that elephants successfully chose preferred species even when presented with complex background odours from nonpreferred plants mimicking multispecies vegetation patches. Elephants also succeeded despite our attempt to mask distinguishing odours with large amounts of a synthetic green leaf volatile. GC–MS analysis confirmed that volatile organic compound profiles differed between plant species. In demonstrating that elephants exploit plant odours even when the signal from preferred plants is embedded in sensory noise of background odours, we provide crucial behavioural evidence that olfaction provides an efficient mechanism for selective, nonrandom foraging. Whether mammalian herbivores recognize novel odours, for example from newly invading plant species, or when air pollution degrades odours of familiar plants, needs investigating. Accounting for the capacity of mammalian herbivores to use plant odour cues will improve models of both their foraging behaviour and the ecosystem impacts of their foraging.A.S. and M.H.S. were supported by the South African National Research Foundation (Grants #: 90691, 90448 & 97262).http://www.elsevier.com/locate/anbehav2020-09-01hj2019Mammal Research InstituteZoology and Entomolog

    Site-Specific Integration and Expression of an Anti-Malarial Gene in Transgenic Anopheles gambiae Significantly Reduces Plasmodium Infections

    Get PDF
    Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. Historically the genetic modification of insects has relied upon transposable elements which have many limitations despite their successful use. To circumvent these limitations the Streptomyces phage phiC31 integrase system has been successfully adapted for site-specific transgene integration in insects. Here, we present the first site-specific transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 targeting site at a defined genomic location. A second phase of genetic modification then achieved site-specific integration of Vida3, a synthetic anti-malarial gene. Expression of Vida3, specifically in the midgut of bloodfed females, offered consistent and significant protection against Plasmodium yoelii nigeriensis, reducing average parasite intensity by 85%. Similar protection was observed against Plasmodium falciparum in some experiments, although protection was inconsistent. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters for their expression, enabling those offering maximum effect with minimum fitness cost to be identified. In the future, this technology will allow effective comparisons and informed choices to be made, potentially leading to complete transmission blockade

    Leveraging Motivations, Personality, and Sensory Cues for Vertebrate Pest Management

    Get PDF
    Acknowledgments: We wish to thank Manaaki Whenua – Landcare Research staff, particularly Peter Millard and Bruce Warburton, for facilitating and supporting this research. Thanks to Jenna Bytheway for infographic design. This research was supported by Strategic Science Investment funding from the New Zealand Ministry of Business, Innovation and Employment’s Science and Innovation Group, awarded to Manaaki Whenua – Landcare Research. T.W.B. was supported by Marie Skłodowska-Curie grant number 747120, and A.S. was supported by National Science Foundation grant IOS 1456724.Peer reviewedPublisher PD

    Evolution of late-stage metastatic melanoma is dominated by aneuploidy and whole genome doubling

    Get PDF
    Although melanoma is initiated by acquisition of point mutations and limited focal copy number alterations in melanocytes-of-origin, the nature of genetic changes that characterise lethal metastatic disease is poorly understood. Here, we analyze the evolution of human melanoma progressing from early to late disease in 13 patients by sampling their tumours at multiple sites and times. Whole exome and genome sequencing data from 88 tumour samples reveals only limited gain of point mutations generally, with net mutational loss in some metastases. In contrast, melanoma evolution is dominated by whole genome doubling and large-scale aneuploidy, in which widespread loss of heterozygosity sculpts the burden of point mutations, neoantigens and structural variants even in treatment-naïve and primary cutaneous melanomas in some patients. These results imply that dysregulation of genomic integrity is a key driver of selective clonal advantage during melanoma progression

    Interferon-driven alterations of the host’s amino acid metabolism in the pathogenesis of typhoid fever

    Get PDF
    Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health problem in resource-limited settings and, despite decades of research, human responses to the infection are poorly understood. In 41 healthy adults experimentally infected with wild-type S. Typhi, we detected significant cytokine responses within 12 h of bacterial ingestion. These early responses did not correlate with subsequent clinical disease outcomes and likely indicate initial host–pathogen interactions in the gut mucosa. In participants developing enteric fever after oral infection, marked transcriptional and cytokine responses during acute disease reflected dominant type I/II interferon signatures, which were significantly associated with bacteremia. Using a murine and macrophage infection model, we validated the pivotal role of this response in the expression of proteins of the host tryptophan metabolism during Salmonella infection. Corresponding alterations in tryptophan catabolites with immunomodulatory properties in serum of participants with typhoid fever confirmed the activity of this pathway, and implicate a central role of host tryptophan metabolism in the pathogenesis of typhoid fever
    corecore