258 research outputs found

    Overview of the JWST Program

    Get PDF
    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 micron to 28 micron. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We will review the expected scientific performance of the observatory, and recent technical progress with the observatory and its complement of instruments

    Fomalhaut's Debris Disk and Planet: Constraining the Mass of Formalhaut B from Disk Morphology

    Get PDF
    Following the optical imaging of exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass M(sub pl) 101.5AU, and an orbital eccentricity e(sub pl) = 0.11 - 0.13. These conclusions are independent of Fom b's photometry. To not disrupt the disk, a greater mass for Fom b demands a smaller orbit farther removed from the disk; thus, future astrometric measurement of Fom b's orbit, combined with our model of planet-disk interaction, can be used to determine the mass more precisely. The inner edge of the debris disk at a approximately equals 133AU lies at the periphery of Fom b's chaotic zone, and the mean disk eccentricity of e approximately equals 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of approximately 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to approximately 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fomalhaut b's nominal space velocity does not bear this out, but the astrometric uncertainties are difficult to quantify. Even if the apsidal misalignment proves real, our calculated upper mass limit of 3 M(sub J) still holds. Parent bodies are evacuated from mean-motion resonances with Fom b; these empty resonances are akin to the Kirkwood gaps opened by Jupiter. The belt contains at least 3M(sub Earth) of solids that are grinding down to dust, their velocity dispersions stirred so strongly by Fom b that collisions are destructive. Such a large mass in solids is consistent with Fom b having formed in situ

    The Low End of the Initial Mass Function in Young LMC Clusters: I. The Case of R136

    Get PDF
    We report the result of a study in which we have used very deep broadband V and I WFPC2 images of the R136 cluster in the Large Magellanic Cloud from the HST archive, to sample the luminosity function below the detection limit of 2.8 Mo previously reached. In these new deeper images, we detect stars down to a limiting magnitude of m_F555W = 24.7 (~ 1 magnitude deeper than previous works), and identify a population of red stars evenly distributed in the surrounding of the R136 cluster. A comparison of our color-magnitude diagram with recentely computed evolutionary tracks indicates that these red objects are pre-main sequence stars in the mass range 0.6 - 3 Mo. We construct the initial mass function (IMF) in the 1.35 - 6.5 Mo range and find that, after correcting for incompleteness, the IMF shows a definite flattening below ~ 2 Mo. We discuss the implications of this result for the R136 cluster and for our understanding of starburst galaxies formation and evolution in general.Comment: 29 pages, 6 tables, 11 figures included + 3 external files, accepted for publication by Ap.

    Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope

    Get PDF
    Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths (1-3 Earth radii). Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars, that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope (JWST). We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15-micron bands to measure CO2 absorption in superEarths, as well as JWST/NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and CO2 absorption at 4.3-microns. We project that TESS will discover about eight nearby habitable transiting superEarths. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, CO2) in one to four nearby habitable TESS superEarths.Comment: accepted for PASP; added discussion and figure for habitable planets; abridged Abstrac

    High speed quadrant CCDs for adaptive optics

    Get PDF
    The Johns Hopkins University is developing an adaptive optics coronagraph for the study of circumstellar material at high resolution. The first generation instrument corrects for image motion, i.e., wavefront tilt, using an image motion sensor coupled to a high speed tip/tilt mirror. The image motion sensor is built around a quadrant CCD which detects offsets from the null position. The performance of this device and present results demonstrating its operation in the laboratory are discussed

    Phase light curves for extrasolar Jupiters and Saturns

    Full text link
    We predict how a remote observer would see the brightness variations of giant planets similar to Jupiter and Saturn as they orbit their central stars. We model the geometry of Jupiter, Saturn and Saturn's rings for varying orbital and viewing parameters. Scattering properties for the planets and rings at wavelenghts 0.6-0.7 microns follow Pioneer and Voyager observations, namely, planets are forward scattering and rings are backward scattering. Images of the planet with or without rings are simulated and used to calculate the disk-averaged luminosity varying along the orbit, that is, a light curve is generated. We find that the different scattering properties of Jupiter and Saturn (without rings) make a substantial difference in the shape of their light curves. Saturn-size rings increase the apparent luminosity of the planet by a factor of 2-3 for a wide range of geometries. Rings produce asymmetric light curves that are distinct from the light curve of the planet without rings. If radial velocity data are available for the planet, the effect of the ring on the light curve can be distinguished from effects due to orbital eccentricity. Non-ringed planets on eccentric orbits produce light curves with maxima shifted relative to the position of the maximum planet's phase. Given radial velocity data, the amount of the shift restricts the planet's unknown orbital inclination and therefore its mass. Combination of radial velocity data and a light curve for a non-ringed planet on an eccentric orbit can also be used to constrain the surface scattering properties of the planet. To summarize our results for the detectability of exoplanets in reflected light, we present a chart of light curve amplitudes of non-ringed planets for different eccentricities, inclinations, and the viewing azimuthal angles of the observer.Comment: 40 pages, 13 figures, submitted to Ap.

    Can Life develop in the expanded habitable zones around Red Giant Stars?

    Full text link
    We present some new ideas about the possibility of life developing around sub-giant and red giant stars. Our study concerns the temporal evolution of the habitable zone. The distance between the star and the habitable zone, as well as its width, increases with time as a consequence of stellar evolution. The habitable zone moves outward after the star leaves the main sequence, sweeping a wider range of distances from the star until the star reaches the tip of the asymptotic giant branch. If life could form and evolve over time intervals from 5×1085 \times 10^8 to 10910^9 years, then there could be habitable planets with life around red giant stars. For a 1 M⊙_{\odot} star at the first stages of its post main-sequence evolution, the temporal transit of the habitable zone is estimated to be of several 109^9 years at 2 AU and around 108^8 years at 9 AU. Under these circumstances life could develop at distances in the range 2-9 AU in the environment of sub-giant or giant stars and in the far distant future in the environment of our own Solar System. After a star completes its first ascent along the Red Giant Branch and the He flash takes place, there is an additional stable period of quiescent He core burning during which there is another opportunity for life to develop. For a 1 M⊙_{\odot} star there is an additional 10910^9 years with a stable habitable zone in the region from 7 to 22 AU. Space astronomy missions, such as proposed for the Terrestrial Planet Finder (TPF) and Darwin should also consider the environments of sub-giants and red giant stars as potentially interesting sites for understanding the development of life
    • …
    corecore