19 research outputs found

    Simultaneous mapping of multiple gene loci with pooled segregants

    Get PDF
    The analysis of polygenic, phenotypic characteristics such as quantitative traits or inheritable diseases remains an important challenge. It requires reliable scoring of many genetic markers covering the entire genome. The advent of high-throughput sequencing technologies provides a new way to evaluate large numbers of single nucleotide polymorphisms (SNPs) as genetic markers. Combining the technologies with pooling of segregants, as performed in bulked segregant analysis (BSA), should, in principle, allow the simultaneous mapping of multiple genetic loci present throughout the genome. The gene mapping process, applied here, consists of three steps: First, a controlled crossing of parents with and without a trait. Second, selection based on phenotypic screening of the offspring, followed by the mapping of short offspring sequences against the parental reference. The final step aims at detecting genetic markers such as SNPs, insertions and deletions with next generation sequencing (NGS). Markers in close proximity of genomic loci that are associated to the trait have a higher probability to be inherited together. Hence, these markers are very useful for discovering the loci and the genetic mechanism underlying the characteristic of interest. Within this context, NGS produces binomial counts along the genome, i.e., the number of sequenced reads that matches with the SNP of the parental reference strain, which is a proxy for the number of individuals in the offspring that share the SNP with the parent. Genomic loci associated with the trait can thus be discovered by analyzing trends in the counts along the genome. We exploit the link between smoothing splines and generalized mixed models for estimating the underlying structure present in the SNP scatterplots

    The Effects of Combined Exposure to Simulated Microgravity, Ionizing Radiation, and Cortisol on the In Vitro Wound Healing Process

    Get PDF
    Human spaceflight is associated with several health-related issues as a result of long-term exposure to microgravity, ionizing radiation, and higher levels of psychological stress. Frequent reported skin problems in space include rashes, itches, and a delayed wound healing. Access to space is restricted by financial and logistical issues; as a consequence, experimental sample sizes are often small, which limits the generalization of the results. Earth-based simulation models can be used to investigate cellular responses as a result of exposure to certain spaceflight stressors. Here, we describe the development of an in vitro model of the simulated spaceflight environment, which we used to investigate the combined effect of simulated microgravity using the random positioning machine (RPM), ionizing radiation, and stress hormones on the wound-healing capacity of human dermal fibroblasts. Fibroblasts were exposed to cortisol, after which they were irradiated with different radiation qualities (including X-rays, protons, carbon ions, and iron ions) followed by exposure to simulated microgravity using a random positioning machine (RPM). Data related to the inflammatory, proliferation, and remodeling phase of wound healing has been collected. Results show that spaceflight stressors can interfere with the wound healing process at any phase. Moreover, several interactions between the different spaceflight stressors were found. This highlights the complexity that needs to be taken into account when studying the effect of spaceflight stressors on certain biological processes and for the aim of countermeasures development

    POPPeT:a New Method to Predict the Protection Factor of Backbone Amide Hydrogens

    No full text

    Accurate prediction of metagenome-assembled genome completeness by MAGISTA, a random forest model built on alignment-free intra-bin statistics

    No full text
    Background Although the total number of microbial taxa on Earth is under debate, it is clear that only a small fraction of these has been cultivated and validly named. Evidently, the inability to culture most bacteria outside of very specific conditions severely limits their characterization and further studies. In the last decade, a major part of the solution to this problem has been the use of metagenome sequencing, whereby the DNA of an entire microbial community is sequenced, followed by the in silico reconstruction of genomes of its novel component species. The large discrepancy between the number of sequenced type strain genomes (around 12,000) and total microbial diversity (106–1012 species) directs these efforts to de novo assembly and binning. Unfortunately, these steps are error-prone and as such, the results have to be intensely scrutinized to avoid publishing incomplete and low-quality genomes. Results We developed MAGISTA (metagenome-assembled genome intra-bin statistics assessment), a novel approach to assess metagenome-assembled genome quality that tackles some of the often-neglected drawbacks of current reference gene-based methods. MAGISTA is based on alignment-free distance distributions between contig fragments within metagenomic bins, rather than a set of reference genes. For proper training, a highly complex genomic DNA mock community was needed and constructed by pooling genomic DNA of 227 bacterial strains, specifically selected to obtain a wide variety representing the major phylogenetic lineages of cultivable bacteria. Conclusions MAGISTA achieved a 20% reduction in root-mean-square error in comparison to the marker gene approach when tested on publicly available mock metagenomes. Furthermore, our highly complex genomic DNA mock community is a very valuable tool for benchmarking (new) metagenome analysis methods

    Intestinal mucositis precedes dysbiosis in a mouse model for pelvic irradiation

    No full text
    Pelvic radiotherapy is known to evoke intestinal mucositis and dysbiosis. Currently, there are no effective therapies available to mitigate these injuries, which is partly due to a lack of insight into the events causing mucositis and dysbiosis. Here, the complex interplay between the murine host and its microbiome following pelvic irradiation was mapped by characterizing intestinal mucositis along with extensive 16S microbial profiling. We demonstrated important morphological and inflammatory implications within one day after exposure, thereby impairing intestinal functionality and inducing translocation of intraluminal bacteria into mesenteric lymph nodes as innovatively quantified by flow cytometry. Concurrent 16S microbial profiling revealed a delayed impact of pelvic irradiation on beta diversity. Analysis of composition of microbiomes identified biomarkers for pelvic irradiation. Among them, members of the families Ruminococcaceae, Lachnospiraceae and Porphyromonadaceae were differentially affected. Altogether, our unprecedented findings showed how pelvic irradiation evoked structural and functional changes in the intestine, which secondarily resulted in a microbiome shift. Therefore, the presented in vivo irradiation-gut-microbiome platform allows further research into the pathobiology of pelvic irradiation-induced intestinal mucositis and resultant dysbiosis, as well as the exploration of mitigating treatments including drugs and food supplements

    Chromosome XIV.

    No full text
    <p>SNP frequencies and smoothed trends for pool 1 (left panel) and pool 2 (right panel). The gray area indicates the confidence band. The vertical lines indicate the location of the three identified genes, i.e., , and . The red line is based on the frequencies of the artificial markers.</p
    corecore