22 research outputs found

    Neuro-Symbolic Approaches for Context-Aware Human Activity Recognition

    Full text link
    Deep Learning models are a standard solution for sensor-based Human Activity Recognition (HAR), but their deployment is often limited by labeled data scarcity and models' opacity. Neuro-Symbolic AI (NeSy) provides an interesting research direction to mitigate these issues by infusing knowledge about context information into HAR deep learning classifiers. However, existing NeSy methods for context-aware HAR require computationally expensive symbolic reasoners during classification, making them less suitable for deployment on resource-constrained devices (e.g., mobile devices). Additionally, NeSy approaches for context-aware HAR have never been evaluated on in-the-wild datasets, and their generalization capabilities in real-world scenarios are questionable. In this work, we propose a novel approach based on a semantic loss function that infuses knowledge constraints in the HAR model during the training phase, avoiding symbolic reasoning during classification. Our results on scripted and in-the-wild datasets show the impact of different semantic loss functions in outperforming a purely data-driven model. We also compare our solution with existing NeSy methods and analyze each approach's strengths and weaknesses. Our semantic loss remains the only NeSy solution that can be deployed as a single DNN without the need for symbolic reasoning modules, reaching recognition rates close (and better in some cases) to existing approaches

    ContextGPT: Infusing LLMs Knowledge into Neuro-Symbolic Activity Recognition Models

    Full text link
    Context-aware Human Activity Recognition (HAR) is a hot research area in mobile computing, and the most effective solutions in the literature are based on supervised deep learning models. However, the actual deployment of these systems is limited by the scarcity of labeled data that is required for training. Neuro-Symbolic AI (NeSy) provides an interesting research direction to mitigate this issue, by infusing common-sense knowledge about human activities and the contexts in which they can be performed into HAR deep learning classifiers. Existing NeSy methods for context-aware HAR rely on knowledge encoded in logic-based models (e.g., ontologies) whose design, implementation, and maintenance to capture new activities and contexts require significant human engineering efforts, technical knowledge, and domain expertise. Recent works show that pre-trained Large Language Models (LLMs) effectively encode common-sense knowledge about human activities. In this work, we propose ContextGPT: a novel prompt engineering approach to retrieve from LLMs common-sense knowledge about the relationship between human activities and the context in which they are performed. Unlike ontologies, ContextGPT requires limited human effort and expertise. An extensive evaluation carried out on two public datasets shows how a NeSy model obtained by infusing common-sense knowledge from ContextGPT is effective in data scarcity scenarios, leading to similar (and sometimes better) recognition rates than logic-based approaches with a fraction of the effort

    SelfAct: Personalized Activity Recognition based on Self-Supervised and Active Learning

    Full text link
    Supervised Deep Learning (DL) models are currently the leading approach for sensor-based Human Activity Recognition (HAR) on wearable and mobile devices. However, training them requires large amounts of labeled data whose collection is often time-consuming, expensive, and error-prone. At the same time, due to the intra- and inter-variability of activity execution, activity models should be personalized for each user. In this work, we propose SelfAct: a novel framework for HAR combining self-supervised and active learning to mitigate these problems. SelfAct leverages a large pool of unlabeled data collected from many users to pre-train through self-supervision a DL model, with the goal of learning a meaningful and efficient latent representation of sensor data. The resulting pre-trained model can be locally used by new users, which will fine-tune it thanks to a novel unsupervised active learning strategy. Our experiments on two publicly available HAR datasets demonstrate that SelfAct achieves results that are close to or even better than the ones of fully supervised approaches with a small number of active learning queries

    Ultrasound Detection of Subquadricipital Recess Distension

    Full text link
    Joint bleeding is a common condition for people with hemophilia and, if untreated, can result in hemophilic arthropathy. Ultrasound imaging has recently emerged as an effective tool to diagnose joint recess distension caused by joint bleeding. However, no computer-aided diagnosis tool exists to support the practitioner in the diagnosis process. This paper addresses the problem of automatically detecting the recess and assessing whether it is distended in knee ultrasound images collected in patients with hemophilia. After framing the problem, we propose two different approaches: the first one adopts a one-stage object detection algorithm, while the second one is a multi-task approach with a classification and a detection branch. The experimental evaluation, conducted with 483483 annotated images, shows that the solution based on object detection alone has a balanced accuracy score of 0.740.74 with a mean IoU value of 0.660.66, while the multi-task approach has a higher balanced accuracy value (0.780.78) at the cost of a slightly lower mean IoU value

    Modeling and reasoning with ProbLog: an application in recognizing complex activities

    Full text link
    Smart-home activity recognition is an enabling tool for a wide range of ambient assisted living applications. The recognition of ADLs usually relies on supervised learning or knowledge-based reasoning techniques. In order to overcome the well-known limitations of those two approaches and, at the same time, to combine their strengths to improve the recognition rate, many researchers investigated Markov Logic Networks (MLNs). However, MLNs require a non-trivial effort by experts to properly model probabilities in terms of weights. In this paper, we propose a novel method based on ProbLog. ProbLog is a probabilistic extension of Prolog, which allows to explicitly define probabilistic facts and rules. With respect to MLN, the inference mode of ProbLog is based on the closed-world assumption and it has faster response times. We propose a simple and flexible ProbLog model, which we exploit to recognize complex ADLs in an online fashion. Considering a dataset with 21 subjects, our results show that our method reaches high F-measure (83%). Moreover, we also show that the response time of ProbLog is satisfying for real-time applications

    Analysis of long-term abnormal behaviors for early detection of cognitive decline

    No full text
    Several researchers have proposed methods and designed systems for the automatic recognition of activities and abnormal behaviors with the goal of early detecting cognitive impairment. In this paper, we propose LOTAR, a hybrid behavioral analysis system coupling state of the art machine learning techniques with knowledge-based and data mining methods. Medical models designed in collaboration with cognitive neuroscience researchers guide the recognition of short- and long-term abnormal behaviors. In particular, we focus on historical behavior analysis for long-term anomaly detection, which is the principal novelty with respect to our previous works. We present preliminary results obtained by evaluating the method on a dataset acquired during three months of experimentation in a real patient's home. Results indicate the potential utility of the system for long-term monitoring of cognitive health
    corecore