49 research outputs found

    New trenching results along the İznik segment of the central strand of the North Anatolian Fault (Turkey): an integration with preexisting data

    Get PDF
    AbstractThis paper provides a new contribution to the construction of the complex and fragmentary mosaic of the Late Holocene earthquakes history of the İznik segment of the central strand of the North Anatolian Fault (CNAF) in Turkey. The CNAF clearly displays lower dextral slip rates with respect to the northern strand however, surface rupturing and large damaging earthquakes (M > 7) occurred in the past, leaving clear signatures in the built and natural environments. The association of these historical events to specific earthquake sources (e.g., Gemlik, İznik, or Geyve fault segments) is still a matter of debate. We excavated two trenches across the İznik fault trace near Mustafali, a village about 10 km WSW of İznik where the morphological fault scarp was visible although modified by agricultural activities. Radiocarbon and TL dating on samples collected from the trenches show that the displaced deposits are very recent and span the past 2 millennia at most. Evidence for four surface faulting events was found in the Mustafali trenches. The integration of these results with historical data and previous paleoseismological data yields an updated Late Holocene history of surface-rupturing earthquakes along the İznik Fault in 1855, 740 (715), 362, and 121 CE. Evidence for the large M7 + historical earthquake dated 1419 CE generally attributed to this fault, was not found at any trench site along the İznik fault nor in the subaqueous record. This unfit between paleoseismological, stratigraphic, and historical data highlights one more time the urge for extensive paleoseismological trenching and offshore campaigns because of the high potential to solve the uncertainties on the seismogenic history (age, earthquake location, extent of the rupture and size) of this portion of NAFZ and especially on the attribution of historical earthquakes to the causative fault

    Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) using high-resolution refraction and electrical resistivity tomography coupled with time-domain electromagnetic data

    Get PDF
    The Piano di Pezza fault (PPF) is the north-westernmost segment of the >20 km long Ovindoli-Pezza active normal fault-system (central Italy). Although existing paleoseismic data document high vertical Holocene slip rates (~1 mm/yr) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still unknown. We investigated the shallow subsurface of a key section of the PPF using seismic and electrical resistivity tomography coupled with time-domain electromagnetic measurements (TDEM). We provide 2-D Vp and resistivity images showing details of the fault structure and the geometry of the shallow basin infill down to 35-40 m depth. We can estimate the dip and the Holocene vertical displacement of the master fault. TDEM measurements in the fault hangingwall indicate that the pre-Quaternary carbonate basement may be found at ~90-100 m depth

    Reply to “Comment on ‘The 21 August 2017 Md 4.0 Casamicciola Earthquake: First Evidence of Coseismic Normal Surface Faulting at the Ischia Volcanic Island’ by Nappi et al. (2018)” by V. De Novellis, S. Carlino, R. Castaldo, A. Tramelli, C. De Luca, N. A. Pino, S. Pepe, V. Convertito, I. Zinno, P. De Martino, M. Bonano, F. Giudicepietro, F. Casu, G. Macedonio, M. Manunta, M. Manzo, G. Solaro, P. Tizzani, G. Zeni, and R. Lanari

    Get PDF
    In this article, we show why the geological model of the 21 August 2017 earthquake proposed by Nappi et al. (2018) has less uncertainty than the sourcemodel proposed by De Novellis et al. (2018). As a matter of fact, the Nappi et al. (2018) model takes into account all geophysical and geological information collected soon after the earthquake. On the contrary, the model proposed by DeNovellis et al. (2018) is based on a limited database, which does not include (1) the available geological and macroseismic information and (2) the extensive scientific literature concerning the correlation between seismic source and surface faulting, also in volcanic areas similar to Ischia. Nevertheless, we are grateful for the comments from De Novellis et al. (2018) because they give us the opportunity to consider the epistemological landscape in which we should frame the research for the best source model of the 21 August 2017 Casamicciola earthquake.Published316-3211T. Deformazione crostale attivaJCR Journa

    The 21 August 2017 Md 4.0 Casamicciola Earthquake: First Evidence of Coseismic Normal Surface Faulting at the Ischia Volcanic Island

    Get PDF
    On 21 August 2017, a shallow earthquake of Md 4.0 struck the CasamicciolaTerme village in the north of Ischia volcanic island (Italy). It caused two fatalities and heavy damage in a restricted area of a few square kilometers. Casamicciola Terme has been recurrently destroyed in the last centuries by similar volcano-tectonic earthquakes (1762, 1767, 1796, 1828, 1881, and 1883). After the catastrophic 1883 Casamicciola event (2343 casualties), this is the first heavy damaging earthquake at Ischia that provides, for the first time, the opportunity of integrating historical seismicity, macroseismic observations, instrumental information, and detailed mapping of coseismic geological effects. Soon after the 2017 mainshock we surveyed the epicentral area to collect data on the coseismic ground effects, recording more than 100 geological field observations. Mapped effects define a belt which closely follows the trace of the Casamicciola E–W-trending normal fault system, bounding the northern slope of Mt. Epomeo, previously known as a Latest Pleistocene to Holocene normal fault with a slip rate of ∼3:0 cm=yr. We found significant evidence for coseismic surface faulting, testified by a main alignment of ruptures for a 2 km end-to-end length and normal dip-slip displacement of 1–3 cm. The geometry and regularity of the structural pattern, together with constant kinematics of the coseismic ruptures with the north side down, strongly suggest a primary tectonic origin for the mapped ruptures and strongly supports an E–W normal-faulting focal mechanism for the 2017 Casamicciola earthquake.Macroseismic information supports the notion that previous historical events also had a similar style of faulting.Published1323-13343T. Sorgente sismicaJCR Journa

    TITLE: Looking for surface faulting ancestors of the L’Aquila April 6, 2009 event: preliminary paleoseismological data and seismic hazard implications

    Get PDF
    The occurrence of the Mw 6.3, April 6, 2009 earthquake has highlighted how critical is the knowledge of the location and of the characteristics of the active faults in a seismic region. This is true not only as a contribution to the seismic hazard assessment but also for the local planning of residential areas, plants and infrastructures. The 2009 earthquake occurred on the Paganica normal fault (PF hereinafter) and produced 3 km-long, maximum 0.1 m-high surface rupture along its central section, and secondary slip along nearby tectonic structures. The PF consists of a prominent morphologic scarp formed by the tectonic juxtaposition of Pliocene-middle Pleistocene and late Pleistocene alluvial deposits, and by lower scarps in late Pleistocene-Holocene deposits. The fault, NW-SE striking and SW dipping, runs for a total length of about 20 km along the NE side of the Aterno River valley, a graben-type basin bounded by marked antithetic faults. The limited extent and the small throw of the 2009 surface ruptures, when compared to the size of the Paganica long-term fault scarp, suggest that the PF probably experienced larger Magnitude earthquakes than the 2009 seismic event. Thus, although the April 6, 2009 earthquake and associated surface faulting caused loss of lives and major damage, we believe that this event does not fully characterize the seismic hazard of the area. Therefore, a campaign of paleoseismological investigations is underway with the aim of defining the Max Magnitude, the average rate of displacement and the frequency of seismic events on the PF and on the nearby faults. An amazing “coseismic” trench, caved by the overpressure produced by the broken pipe of an aqueduct, provided the exposure of a 30-m wide fault zone of the PF. We show the preliminary results from the analysis of this site, as well as from other sites along the PF. In addition, we also present preliminary paleoseismological data from the antithetic Fossa fault. A major finding at this early stage of our field campaign is the recognition of large displacements (0.5 to 1 m) associated to individual events affecting deposits of Holocene age based on radiocarbon dating and pottery content

    Geometry and evolution of a fault-controlled Quaternary basin by means of TDEM and single-station ambient vibration surveys: The example of the 2009 L'Aquila earthquake area, central Italy

    Get PDF
    We applied a joint survey approach integrating time domain electromagnetic soundings and single-station ambient vibration surveys in the Middle Aterno Valley (MAV), an intermontane basin in central Italy and the locus of the 2009 L’Aquila earthquake. By imaging the buried interface between the infilling deposits and the top of the pre-Quaternary bedrock, we reveal the 3-D basin geometry and gain insights into the long-term basin evolution. We reconstruct a complex subsurface architecture, characterized by three main depocenters separated by thresholds. Basin infill thickness varies from ~200–300m in the north to more than 450m to the southeast. Our subsurface model indicates a strong structural control on the architecture of the basin and highlights that the MAV experienced considerable modifications in its configuration over time. The buried shape of the MAV suggests a recent and still ongoing predominant tectonic control by the NW-SE trending Paganica-San Demetrio Fault System (PSDFS), which crosscuts older ~ENE and NNE trending extensional faults. Furthermore, we postulate that the present-day arrangement of the PSDFS is the result of the linkage of two previously isolated fault segments. We provide constraints on the location of the southeastern boundary of the PSDFS, defining an overall ~19 km long fault system characterized by a considerable seismogenetic potential and a maximum expected magnitude larger than M6.5. This study emphasizes the benefit of combining two easily deployable geophysical methods for reconstructing the 3-D geometry of a tectonically controlled basin. Our joint approach provided us with a consistent match between these two independent estimations of the basin substratum depth within 15%.Published2236–22597T. Struttura della Terra e geodinamica2TR. Ricostruzione e modellazione della struttura crostaleJCR Journa

    The liquefaction features in the area of the May-June 2012 Emilia seismic sequence: An investigation approach coupling Electric Resistivity Tomography (ERT) with coring

    Get PDF
    In order to geometrically characterize the liquefaction features observed in the epicentral sector of the 2012 Emilia seismic sequence and to evaluate the potential for recording palaeoseismic features of the area, we performed two electric resistivity tomographic sections and 4 shallow corings, coupled with 14C datings and archaeological age estimates in selected sites. Preliminary results show that there is a good agreement between ERT sections and core-logs; moreover a major role in determining the scalar relationships of the liquefaction features is played by the local geomorphological and topographic setting. The high sedimentation rates obtained through core datings (4 – 20 mm/yr) suggest that the described methodological approach can cover time windows of only a few centuries, thus hardly encompassing, in this tectonic setting, a significant period for paleoseismological purposes.Published206-2092T. Deformazione crostale attivaN/A or not JC

    Unoccupied Aircraft Systems (UASs) Reveal the Morphological Changes at Stromboli Volcano (Italy) before, between, and after the 3 July and 28 August 2019 Paroxysmal Eruptions

    Get PDF
    In July and August 2019, two paroxysmal eruptions dramatically changed the morphology of the crater terrace that hosts the active vents of Stromboli volcano (Italy). Here, we document these morphological changes, by using 2259 UAS-derived photographs from eight surveys and Structure-from-Motion (SfM) photogrammetric techniques, resulting in 3D point clouds, orthomosaics, and digital surface models (DSMs) with resolution ranging from 8.1 to 12.4 cm/pixel. We focus on the morphological evolution of volcanic features and volume changes in the crater terrace and the upper part of the underlying slope (Sciara del Fuoco). We identify both crater terrace and lava field variations, with vents shifting up to 47 m and the accumulation of tephra deposits. The maximum elevation changes related to the two paroxysmal eruptions (in between May and September 2019) range from +41.4 to −26.4 m at the lava field and N crater area, respectively. Throughout September 2018–June 2020, the total volume change in the surveyed area was +447,335 m3. Despite Stromboli being one of the best-studied volcanoes worldwide, the UAS-based photogrammetry products of this study provide unprecedented high spatiotemporal resolution observations of its entire summit area, in a period when volcanic activity made the classic field inspections and helicopter overflights too risky. Routinely applied UAS operations represent an effective and evolving tool for volcanic hazard assessment and to support decision-makers involved in volcanic surveillance and civil protection operations

    Evidence for surface faulting earthquakes on the Montereale fault system (Abruzzi Apennines, central Italy)

    Get PDF
    We conducted paleoseismic studies along the Montereale fault system (MFS; central Italy). The MFS shows geomorphological evidence of Late Quaternary activity and falls within the highest seismic hazard zone of central Apennines, between the epicentral areas of two recent earthquake sequences: 2009 L’Aquila and 2016–2017 central Italy. We excavated two trenches along the San Giovanni fault splay of the system, one intercepting the N140° striking bedrock main fault plane and the other cutting two subparallel fault scarps on the colluvial/alluvial deposits on the fault hanging wall. Excavations revealed repeated fault reactivation with surface faulting in prehistorical and historical times. We recognized and dated seven events in the last 26 kyr. The most recent ground-rupturing event (evb1) possibly occurred 650–1,820 AD, consistent with one of the three main shocks that struck the area in 1,703 AD. A previous event (evb2) occurred between 5,330 BC and 730 BC, while older events occurred at 6,590–5,440 BC (evb3), 9,770–6,630 BC (evb4), and 16,860–13,480 BC (evb5). We documented two older displacement events (evb7 and evb6) between 23,780 BC and 16,850 BC. The minimum vertical slip rate at the trench site in the last 28–24 kyr is 0.3–0.4 mm/year. The inferred average recurrence interval for surface-faulting events along the MFS is no longer than ~4 kyr. Based on the surface fault length ranging between 12 and 20 km, earthquakes with ≥M 6.0 are possible for the MFS. The MFS is an independent earthquake source, and its paleoseismic data are fully comparable with those known for faults in central Apennines.Published2758-27766T. Studi di pericolosità sismica e da maremotoJCR Journa

    Imaging the three-dimensional architecture of the Middle Aterno basin (2009 L’Aquila earthquake, Central Italy) using ground TDEM and seismic noise surveys: preliminary results

    Get PDF
    We present preliminary results from a multidisciplinary geophysical approach applied to the imaging of the threedimensional architecture of the Middle Aterno basin, close to the epicentral area of the 2009 L’Aquila earthquake (central Italy). We collected several time domain electromagnetic soundings (TDEM) coupled with seismic noise measurements focusing on the characterization of the bedrock/infill interface. Our preliminary results agree with existing geophysical data collected in the area, and show that the southeastern portion of the basin is characterized by a deepening of the Mesozoic-Tertiary bedrock down to a depth of more than 450 m. We found that a joint use of electromagnetic and seismic methods significantly contributes in obtaining new insights on the 3D geometry of the Middle Aterno basin. Moreover, we believe that our combined approach based on TDEM and noise measurements can be adopted to investigate similar geological settings elsewhere.PublishedPescina, Fucino Basin, Italy2T. Tettonica attiva7A. Geofisica di esplorazioneope
    corecore