208 research outputs found

    (Total) Vector Domination for Graphs with Bounded Branchwidth

    Full text link
    Given a graph G=(V,E)G=(V,E) of order nn and an nn-dimensional non-negative vector d=(d(1),d(2),,d(n))d=(d(1),d(2),\ldots,d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum SVS\subseteq V such that every vertex vv in VSV\setminus S (resp., in VV) has at least d(v)d(v) neighbors in SS. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the kk-tuple dominating set problem (this kk is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respectto kk, where kk is the size of solution.Comment: 16 page

    Negative-Pressure Ventilation in Neuromuscular Diseases in the Acute Setting

    Get PDF
    Mechanical ventilation started with negative-pressure ventilation (NPV) during the 1950s to assist patients with respiratory failure, secondary to poliomyelitis. Over the years, technological evolution has allowed for the development of more comfortable devices, leading to an increased interest in NPV. The patients affected by neuromuscular diseases (NMD) with chronic and acute respiratory failure (ARF) may benefit from NPV. The knowledge of the available respiratory-support techniques, indications, contraindications, and adverse effects is necessary to offer the patient a personalized treatment that considers the pathology's complexity

    MO077AUTOMATIC SEGMENTATION OF ARTERIES, ARTERIOLES AND GLOMERULI IN NATIVE BIOPSIES WITH THROMBOTIC MICROANGIOPATHY AND OTHER VASCULAR DISEASES

    Get PDF
    Abstract Background and Aims Thrombotic microangiopathies (TMAs) manifest themselves in arteries, arterioles and glomeruli. Nephropathologists need to differentiate TMAs from mimickers like hypertensive nephropathy and vasculitis which can be problematic due to interobserver disagreement and poorly defined diagnostic criteria over a wide spectrum of morphological changes with partial overlap. As a first step towards a machine learning analysis of TMAs, we developed a computer vision model for segmenting arteries, arterioles and glomeruli in TMA and mimickers. Method We manually segmented n=939 arteries, n=6,023 arterioles, n=4,507 glomeruli on whole slide images (WSIs) of 34 renal biopsies and their HE, PAS, trichrome and Jones sections (19 TMA, 11 hypertensive nephropathy, 4 vasculitis with preglomerular involvement). As a segmentation model we used DeepLab V3, pretrained on 61,734 segmented glomeruli from 768 WSIs. 58 randomly chosen WSIs served as the intrainstitutional holdout testing set after training of the model on the remaining slides. Automatic segmentation accuracies were reported as Cohen's kappa, intersection over union (IoU) and Matthews correlation coefficient (MCC) against the nephropathologist's segmentation as ground truth. Results Over all classes (artery, arteriole, glomerulus) Cohen's kappa was 0.86. IoU was 0.716 for artery, 0.491 for arteriole and 0.829 for glomerulus. MCC was 0.837 for artery, 0.664 for arteriole and 0.907 for glomerulus. Conclusion We achieved good automatic segmentation of arteries, arterioles and glomeruli, even with severe pathological distortion on routine histopathological slides. We will further improve this segmentation technology in order to enable the bulk analysis of these descisive tissue compartments in large clinicopathological repositories of native kidney biopsies with TMA using supervised and unsupervised machine learning algorithms

    Two examples of minimal Cheeger sets in the plane

    Get PDF
    We construct two minimal Cheeger sets in the Euclidean plane, i.e., unique minimizers of the ratio \u201cperimeter over area\u201d among their own measurable subsets. The first one gives a counterexample to the so- called weak regularity property of Cheeger sets, as its perimeter does not coincide with the 1-dimensional Hausdorff measure of its topological boundary. The second one is a kind of porous set, whose boundary is not locally a graph at many of its points, yet it is a weakly regular open set admitting a unique (up to vertical translations) nonparametric solution to the prescribed mean curvature equation, in the extremal case corresponding to the capillarity for perfectly wetting fluids in zero gravity

    Intergenerational and intrafamilial phenotypic variability in 22q11.2 deletion syndrome subjects

    Get PDF
    BACKGROUND: 22q11.2 deletion syndrome (22q11.2DS) is a common microdeletion syndrome, which occurs in approximately 1:4000 births. Familial autosomal dominant recurrence of the syndrome is detected in about 8-28% of the cases. Aim of this study is to evaluate the intergenerational and intrafamilial phenotypic variability in a cohort of familial cases carrying a 22q11.2 deletion. METHODS: Thirty-two 22q11.2DS subjects among 26 families were enrolled. RESULTS: Second generation subjects showed a significantly higher number of features than their transmitting parents (212 vs 129, P = 0.0015). Congenital heart defect, calcium-phosphorus metabolism abnormalities, developmental and speech delay were more represented in the second generation (P < 0.05). Ocular disorders were more frequent in the parent group. No significant difference was observed for the other clinical variables. Intrafamilial phenotypic heterogeneity was identified in the pedigrees. In 23/32 families, a higher number of features were found in individuals from the second generation and a more severe phenotype was observed in almost all of them, indicating the worsening of the phenotype over generations. Both genetic and epigenetic mechanisms may be involved in the phenotypic variability. CONCLUSIONS: Second generation subjects showed a more complex phenotype in comparison to those from the first generation. Both ascertainment bias related to patient selection or to the low rate of reproductive fitness of adults with a more severe phenotype, and several not well defined molecular mechanism, could explain intergenerational and intrafamilial phenotypic variability in this syndrome

    ALPS-Like Phenotype Caused by ADA2 Deficiency Rescued by Allogeneic Hematopoietic Stem Cell Transplantation

    Get PDF
    Adenosine deaminase 2 (ADA2) deficiency is an auto-inflammatory disease due to mutations in cat eye syndrome chromosome region candidate 1 (CECR1) gene, currently named ADA2. The disease has a wide clinical spectrum encompassing early-onset vasculopathy (targeting skin, gut and central nervous system), recurrent fever, immunodeficiency and bone marrow dysfunction. Different therapeutic options have been proposed in literature, but only steroids and anti-cytokine monoclonal antibodies (such as tumor necrosis factor inhibitor) proved to be effective. If a suitable donor is available, hematopoietic stem cell transplantation (HSCT) could be curative. Here we describe a case of ADA2 deficiency in a 4-year-old Caucasian girl. The patient was initially classified as autoimmune neutropenia and then she evolved toward an autoimmune lymphoproliferative syndrome (ALPS)-like phenotype. The diagnosis of ALPS became uncertain due to atypical clinical features and normal FAS-induced apoptosis test. She was treated with G-CSF first and subsequently with immunosuppressive drugs without improvement. Only HSCT from a 9/10 HLA-matched unrelated donor, following myeloablative conditioning, completely solved the clinical signs related to ADA2 deficiency. Early diagnosis in cases presenting with hematological manifestations, rather than classical vasculopathy, allows the patients to promptly undergo HSCT and avoid more severe evolution. Finally, in similar cases highly suspicious for genetic disease, it is desirable to obtain molecular diagnosis before performing HSCT, since it can influence the transplant procedure. However, if HSCT has to be performed without delay for clinical indication, related donors should be excluded to avoid the risk of relapse or partial benefit due to a hereditary genetic defect

    Segmentation of diagnostic tissue compartments on whole slide images with renal thrombotic microangiopathies (TMAs)

    Full text link
    The thrombotic microangiopathies (TMAs) manifest in renal biopsy histology with a broad spectrum of acute and chronic findings. Precise diagnostic criteria for a renal biopsy diagnosis of TMA are missing. As a first step towards a machine learning- and computer vision-based analysis of wholes slide images from renal biopsies, we trained a segmentation model for the decisive diagnostic kidney tissue compartments artery, arteriole, glomerulus on a set of whole slide images from renal biopsies with TMAs and Mimickers (distinct diseases with a similar nephropathological appearance as TMA like severe benign nephrosclerosis, various vasculitides, Bevacizumab-plug glomerulopathy, arteriolar light chain deposition disease). Our segmentation model combines a U-Net-based tissue detection with a Shifted windows-transformer architecture to reach excellent segmentation results for even the most severely altered glomeruli, arterioles and arteries, even on unseen staining domains from a different nephropathology lab. With accurate automatic segmentation of the decisive renal biopsy compartments in human renal vasculopathies, we have laid the foundation for large-scale compartment-specific machine learning and computer vision analysis of renal biopsy repositories with TMAs.Comment: 12 pages, 3 figure

    ALPS-Like Phenotype Caused by ADA2 Deficiency Rescued by Allogeneic Hematopoietic Stem Cell Transplantation

    Get PDF
    Adenosine deaminase 2 (ADA2) deficiency is an auto-inflammatory disease due to mutations in cat eye syndrome chromosome region candidate 1 (CECR1) gene, currently named ADA2. The disease has a wide clinical spectrum encompassing early-onset vasculopathy (targeting skin, gut and central nervous system), recurrent fever, immunodeficiency and bone marrow dysfunction. Different therapeutic options have been proposed in literature, but only steroids and anti-cytokine monoclonal antibodies (such as tumor necrosis factor inhibitor) proved to be effective. If a suitable donor is available, hematopoietic stem cell transplantation (HSCT) could be curative. Here we describe a case of ADA2 deficiency in a 4-year-old Caucasian girl. The patient was initially classified as autoimmune neutropenia and then she evolved toward an autoimmune lymphoproliferative syndrome (ALPS)-like phenotype. The diagnosis of ALPS became uncertain due to atypical clinical features and normal FAS-induced apoptosis test. She was treated with G-CSF first and subsequently with immunosuppressive drugs without improvement. Only HSCT from a 9/10 HLA-matched unrelated donor, following myeloablative conditioning, completely solved the clinical signs related to ADA2 deficiency. Early diagnosis in cases presenting with hematological manifestations, rather than classical vasculopathy, allows the patients to promptly undergo HSCT and avoid more severe evolution. Finally, in similar cases highly suspicious for genetic disease, it is desirable to obtain molecular diagnosis before performing HSCT, since it can influence the transplant procedure. However, if HSCT has to be performed without delay for clinical indication, related donors should be excluded to avoid the risk of relapse or partial benefit due to a hereditary genetic defect
    corecore