157 research outputs found

    Sex reversal explains some, but not all, climate-mediated sex ratio variation within a viviparous reptile

    Get PDF
    Evolutionary transitions in sex-determining systems have occurred frequently yet understanding how they occur remains a major challenge. In reptiles, transitions from genetic to temperature-dependent sex determination can occur if the gene products that determine sex evolve thermal sensitivity, resulting in sex-reversed individuals. However, evidence of sex reversal is limited to oviparous reptiles. Here we used thermal experiments to test whether sex reversal is responsible for differences in sex determination in a viviparous reptile, Carinascincus ocellatus, a species with XY sex chromosomes and population-specific sex ratio response to temperature. We show that sex reversal is occurring and that its frequency is related to temperature. Sex reversal was unidirectional (phenotypic males with XX genotype) and observed in both high- and low-elevation populations. We propose that XX-biased genotypic sex ratios could produce either male- or female-biased phenotypic sex ratios as observed in low-elevation C. ocellatus under variable rates of XX sex reversal. We discuss reasons why sex reversal may not influence sex ratios at high elevation. Our results suggest that the mechanism responsible for evolutionary transitions from genotypic to temperature-dependent sex determination is more complex than can be explained by a single process such as sex reversal

    Forefoot pathology in rheumatoid arthritis identified with ultrasound may not localise to areas of highest pressure: cohort observations at baseline and twelve months

    Get PDF
    BackgroundPlantar pressures are commonly used as clinical measures, especially to determine optimum foot orthotic design. In rheumatoid arthritis (RA) high plantar foot pressures have been linked to metatarsophalangeal (MTP) joint radiological erosion scores. However, the sensitivity of foot pressure measurement to soft tissue pathology within the foot is unknown. The aim of this study was to observe plantar foot pressures and forefoot soft tissue pathology in patients who have RA.Methods A total of 114 patients with established RA (1987 ACR criteria) and 50 healthy volunteers were assessed at baseline. All RA participants returned for reassessment at twelve months. Interface foot-shoe plantar pressures were recorded using an F-Scan® system. The presence of forefoot soft tissue pathology was assessed using a DIASUS musculoskeletal ultrasound (US) system. Chi-square analyses and independent t-tests were used to determine statistical differences between baseline and twelve months. Pearson’s correlation coefficient was used to determine interrelationships between soft tissue pathology and foot pressures.ResultsAt baseline, RA patients had a significantly higher peak foot pressures compared to healthy participants and peak pressures were located in the medial aspect of the forefoot in both groups. In contrast, RA participants had US detectable soft tissue pathology in the lateral aspect of the forefoot. Analysis of person specific data suggests that there are considerable variations over time with more than half the RA cohort having unstable presence of US detectable forefoot soft tissue pathology. Findings also indicated that, over time, changes in US detectable soft tissue pathology are out of phase with changes in foot-shoe interface pressures both temporally and spatially.Conclusions We found that US detectable forefoot soft tissue pathology may be unrelated to peak forefoot pressures and suggest that patients with RA may biomechanically adapt to soft tissue forefoot pathology. In addition, we have observed that, in patients with RA, interface foot-shoe pressures and the presence of US detectable forefoot pathology may vary substantially over time. This has implications for clinical strategies that aim to offload peak plantar pressures

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Rac Inhibition Reverses the Phenotype of Fibrotic Fibroblasts

    Get PDF
    Background: Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce alpha-smooth muscle actin (alpha-SMA), type I collagen and CCN2 (connective tissue growth factor, CTGF). The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies.Methods and Findings: Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc) patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766.Conclusion: Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc
    • …
    corecore