1,656 research outputs found
Cross-Correlation in the Auditory Coincidence Detectors of Owls
Interaural time difference (ITD) plays a central role in many auditory functions, most importantly in sound localization. The classic model for how ITD is computed was put forth by Jeffress (1948). One of the predictions of the Jeffress model is that the neurons that compute ITD should behave as cross-correlators. Whereas cross-correlation-like properties of the ITD-computing neurons have been reported, attempts to show that the shape of the ITD response function is determined by the spectral tuning of the neuron, a core prediction of cross-correlation, have been unsuccessful. Using reverse correlation analysis, we demonstrate in the barn owl that the relationship between the spectral tuning and the ITD response of the ITD-computing neurons is that predicted by cross-correlation. Moreover, we show that a model of coincidence detector responses derived from responses to binaurally uncorrelated noise is consistent with binaural interaction based on cross-correlation. These results are thus consistent with one of the key tenets of the Jeffress model. Our work sets forth both the methodology to answer whether cross-correlation describes coincidence detector responses and a demonstration that in the barn owl, the result is that expected by theory
Geometric approach to Fletcher's ideal penalty function
Original article can be found at: www.springerlink.com Copyright Springer. [Originally produced as UH Technical Report 280, 1993]In this note, we derive a geometric formulation of an ideal penalty function for equality constrained problems. This differentiable penalty function requires no parameter estimation or adjustment, has numerical conditioning similar to that of the target function from which it is constructed, and also has the desirable property that the strict second-order constrained minima of the target function are precisely those strict second-order unconstrained minima of the penalty function which satisfy the constraints. Such a penalty function can be used to establish termination properties for algorithms which avoid ill-conditioned steps. Numerical values for the penalty function and its derivatives can be calculated efficiently using automatic differentiation techniques.Peer reviewe
Crossover from itinerant to localized magnetic excitations through the metal-insulator transition in NaOsO
NaOsO undergoes a metal-insulator transition (MIT) at 410 K,
concomitant with the onset of antiferromagnetic order. The excitation spectra
have been investigated through the MIT by resonant inelastic x-ray scattering
(RIXS) at the Os L edge. Low resolution ( 300 meV)
measurements over a wide range of energies reveal that local electronic
excitations do not change appreciably through the MIT. This is consistent with
a picture in which structural distortions do not drive the MIT. In contrast,
high resolution ( 56 meV) measurements show that the
well-defined, low energy magnons in the insulating state weaken and dampen upon
approaching the metallic state. Concomitantly, a broad continuum of excitations
develops which is well described by the magnetic fluctuations of a nearly
antiferromagnetic Fermi liquid. By revealing the continuous evolution of the
magnetic quasiparticle spectrum as it changes its character from itinerant to
localized, our results provide unprecedented insight into the nature of the MIT
in \naoso. In particular, the presence of weak correlations in the paramagnetic
phase implies a degree of departure from the ideal Slater limit.Comment: Joint submission with Physical Review Letters [Phys. Rev. Lett. 120,
227203 (2018), accepted version at arXiv:1805.03176]. This article includes
further discussion about the calculations performed, models used, and so o
Recommended from our members
Expression of neonatal Fc receptor in the eye
PURPOSE: The neonatal Fc receptor (FcRn) plays a critical role in the homeostasis and degradation of immunoglobulin G (IgG). It mediates the transport of IgG across epithelial cell barriers and recycles IgG in endothelial cells back into the bloodstream. These functions critically depend on the binding of FcRn to the Fc domain of IgG. The half-life and distribution of intravitreally injected anti-VEGF molecules containing IgG-Fc domains might therefore be affected by FcRn expressed in the eye. In order to establish whether FcRn-Fc(IgG) interactions may occur in the eye, we studied the mRNA and protein distribution of FcRn in postmortem ocular tissue.
METHODS: We used qPCR to study mRNA expression of the transmembrane chain of FcRn (FCGRT) in retina, optic nerve, RPE/choroid plexus, ciliary body/iris plexus, lens, cornea, and conjunctiva isolated from mouse, rat, pig, and human postmortem eyes and used immunohistochemistry to determine the pattern of FcRn expression in FCGRT-transgenic mouse and human eyes.
RESULTS: In all four tested species, Fcgrt mRNA was expressed in the retina, RPE/choroid, and the ciliary body/iris, while immunohistochemistry documented FcRn protein expression in the ciliary body epithelium, macrophages, and endothelial cells in the retinal and choroidal vasculature.
CONCLUSIONS: Our results demonstrate that FcRn has the potential to interact with IgG-Fc domains in the ciliary epithelium and retinal and choroidal vasculature, which might affect the half-life and distribution of intravitreally injected Fc-carrying molecules
Crystalline Electric Field Excitations in the Heavy Fermion Superconductor CeCoIn_5
The crystalline electric field (CEF) energy level scheme of the heavy fermion
superconductor CeCoIn_5 has been determined by means of inelastic neutron
scattering (INS). Peaks observed in the INS spectra at 8 meV and 27 meV with
incident neutron energies between E_i=30-60 meV and at a temperature T = 10 K
correspond to transitions from the ground state to the two excited states,
respectively. The wavevector and temperature dependence of these peaks are
consistent with CEF excitations. Fits of the data to a CEF model yield the CEF
parameters B^0_2=-0.80 meV, B^0_4=0.059 meV, and |B^4_4|= 0.137 meV
corresponding to an energy level scheme: Gamma_7^(1) (0)[=0.487|+/-5/2> -
0.873|-/+3/2>], Gamma_7^(2) (8.6 meV, 100 K), and Gamma_6 (24.4 meV, 283 K).Comment: uses latex packages revtex4,amsmath,graphicx,natbib, 9th Annual
MMM-Intermag Conference, (Accepted for publication in J. Appl. Phys.) 7
pages, 2 figure
Revisiting the ground state of CoAlO: comparison to the conventional antiferromagnet MnAlO
The A-site spinel material, CoAl2O4, is a physical realization of the
frustrated diamond-lattice antiferromagnet, a model in which is predicted to
contain unique incommensurate or `spin-spiral liquid' ground states. Our
previous single-crystal neutron scattering study instead classified it as a
`kinetically-inhibited' antiferromagnet, where the long ranged correlations of
a collinear Neel ground state are blocked by the freezing of domain wall motion
below a first-order phase transition at T* = 6.5 K. The current paper expands
on our original results in several important ways. New elastic and inelastic
neutron measurements are presented that show our initial conclusions are
affected by neither the sample measured nor the instrument resolution, while
measurements to temperatures as low as T = 250 mK limit the possible role being
played by low-lying thermal excitations. Polarized diffuse neutron measurements
confirm reports of short-range antiferromagnetic correlations and diffuse
streaks of scattering, but major diffuse features are explained as signatures
of overlapping critical correlations between neighboring Brillouin zones.
Finally, and critically, this paper presents detailed elastic and inelastic
measurements of magnetic correlations in a single-crystal of MnAl2O4, which
acts as an unfrustrated analogue to CoAl2O4. The unfrustrated material is shown
to have a classical continuous phase transition to Neel order at T_N = 39 K,
with collective spinwave excitations and Lorentzian-like critical correlations
which diverge at the transition. Direct comparison between the two compounds
indicates that CoAl2O4 is unique, not in the nature of high-temperature diffuse
correlations, but rather in the nature of the frozen state below T*. The higher
level of cation inversion in the MnAl2O4 sample indicates that this novel
behavior is primarily an effect of greater next-nearest-neighbor exchange.Comment: 13 pages, 8 figures, acccepted for publication in Physical Review
- …