2,388 research outputs found

    Scaling laws in spherical shell dynamos with free-slip boundaries

    Full text link
    Numerical simulations of convection driven rotating spherical shell dynamos have often been performed with rigid boundary conditions, as is appropriate for the metallic cores of terrestrial planets. Free-slip boundaries are more appropriate for dynamos in other astrophysical objects, such as gas-giants or stars. Using a set of 57 direct numerical simulations, we investigate the effect of free-slip boundary conditions on the scaling properties of heat flow, flow velocity and magnetic field strength and compare it with earlier results for rigid boundaries. We find that the nature of the mechanical boundary condition has only a minor influence on the scaling laws. We also find that although dipolar and multipolar dynamos exhibit approximately the same scaling exponents, there is an offset in the scaling pre-factors for velocity and magnetic field strength. We argue that the offset can be attributed to the differences in the zonal flow contribution between dipolar and multipolar dynamos.Comment: 10 pages, 9 figures, 1 table. To appear in ICARU

    Measurements of Stellar Properties through Asteroseismology: A Tool for Planet Transit Studies

    Full text link
    Oscillations occur in stars of most masses and essentially all stages of evolution. Asteroseismology is the study of the frequencies and other properties of stellar oscillations, from which we can extract fundamental parameters such as density, mass, radius, age and rotation period. We present an overview of asteroseismic analysis methods, focusing on how this technique may be used as a tool to measure stellar properties relevant to planet transit studies. We also discuss details of the Kepler Asteroseismic Investigation -- the use of asteroseismology on the Kepler mission in order to measure basic stellar parameters. We estimate that applying asteroseismology to stars observed by Kepler will allow the determination of stellar mean densities to an accuracy of 1%, radii to 2-3%, masses to 5%, and ages to 5-10% of the main-sequence lifetime. For rotating stars, the angle of inclination can also be determined.Comment: To appear in the Proceedings of the 253rd IAU Symposium: "Transiting Planets", May 2008, Cambridge, M

    The influence of trench migration on slab penetration into the lower mantle

    Get PDF
    AbstractA two-dimensional numerical convection model in cartesian geometry is used to study the influence of trench migration on the ability of subducted slabs to penetrate an endothermic phase boundary at 660 km depth. The transient subduction history of an oceanic plate is modelled by imposing plate and trench motion at the surface. The viscosity depends on temperature and depth. A variety of styles of slab behaviour is found, depending predominantly on the trench velocity. When trench retreat is faster than 2–4 cm/a, the descending slab flattens above the phase boundary. At slower rates it penetrates straight into the lower mantle, although flattening in the transition zone may occur later, leading to a complex slab morphology. The slab can buckle, independent of whether it penetrates or not, especially when there is a localised increase in viscosity at the phase boundary. Flattened slabs are only temporarily arrested in the transition zone and sink ultimately into the lower mantle. The results offer a framework for understanding the variety in slab geometry revealed by seismic tomography

    Formation of starspots in self-consistent global dynamo models: Polar spots on cool stars

    Full text link
    Observations of cool stars reveal dark spot-like features on their surfaces. Compared to sunspots, starspots can be bigger or cover a larger fraction of the stellar surface. While sunspots appear only at low latitudes, starspots are also found in polar regions, in particular on rapidly rotating stars. Sunspots are believed to result from the eruption of magnetic flux-tubes rising from the deep interior of the Sun. The strong magnetic field locally reduces convective heat transport to the solar surface. Such flux-tube models have also been invoked to explain starspot properties. However, these models use several simplifications and so far the generation of either sunspots or starspots has not been demonstrated in a self-consistent simulation of stellar magnetic convection. Here we show that direct numerical simulations of a distributed dynamo operating in a density-stratified rotating spherical shell can spontaneously generate cool spots. Convection in the interior of the model produces a large scale magnetic field which interacts with near surface granular convection leading to strong concentrations of magnetic flux and formation of starspots. Prerequisites for the formation of sizeable high-latitude spots in the model are sufficiently strong density stratification and rapid rotation. Our model presents an alternate mechanism for starspot formation by distributed dynamo action.Comment: 14 pages; Important additions in version 2; To appear in A&

    Bridging planets and stars using scaling laws in anelastic spherical shell dynamos

    Full text link
    Dynamos operating in the interiors of rapidly rotating planets and low-mass stars might belong to a similar category where rotation plays a vital role. We quantify this similarity using scaling laws. We analyse direct numerical simulations of Boussinesq and anelastic spherical shell dynamos. These dynamos represent simplified models which span from Earth-like planets to rapidly rotating low-mass stars. We find that magnetic field and velocity in these dynamos are related to the available buoyancy power via a simple power law which holds over wide variety of control parameters.Comment: 2 pages; Proceedings of IAUS 302: Magnetic fields throughout stellar evolution (August 2013, Biarritz, France

    Exploring the Application of Fuzzy Logic and Data Fusion Mechanisms in QAS

    Get PDF

    Applying Data Fusion Methods to Passage Retrieval in QAS

    Get PDF

    An Optimized Soft Computing Based Passage Retrieval System

    Get PDF
    In this paper we propose and evaluate a soft computing-based passage retrieval system for Question Answering Systems (QAS). Fuzzy PR, our base-line passage retrieval system, employs a similarity measure that attempts to model accurately the question reformulation intuition. The similarity measure includes fuzzy logic-based models that evaluate efficiently the proximity of question terms and detect term variations occurring within a passage. Our experimental results using FuzzyPR on the TREC and CLEF corpora show that our novel passage retrieval system achieves better performance compared to other similar systems. Finally, we describe the performance results of OptFuzzyPR, an optimized version of FuzzyPR, created by optimizing the values of FuzzyPR system parameters using genetic algorithms

    FuzzyPR:an Effective Passage Retrieval System for QAS

    Get PDF

    Tests of core flow imaging methods with numerical dynamos

    Get PDF
    We test the quality of a new core flow imaging method that incorporates constraints on flow helicity, using synthetic magnetic secular variation data from 3-D self-consistent numerical dynamo models. Comparison with the dynamo model flows reveals that our imaging method delineates most of the main large-scale flow features, both in pattern and magnitude. The dynamo model flows are characterized by high-latitude vortices, some equatorial symmetry, columnar convection and a significant amount of flow along radial magnetic field contours. Our inversion method correctly images these aspects of the flows. The correlation coefficient between the dynamo velocity and the imaged velocity exceeds 0.5 in cases with large-scale flow and magnetic field pattern, but degrades substantially in more complex cases when the scale of the secular variation is small. The magnitude of the imaged velocity depends on the a priori-assumed ratio of tangential divergence to radial vorticity k, in some resemblance to the damping parameter in spectral methods, although with our method the misfit is insensitive to k-values. Including tangential magnetic diffusion in core flow inversion improves the quality of the imaged velocity patte
    corecore