23,230 research outputs found
A diffuse radar scattering model from Martian surface rocks
Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed
Vetoes for Inspiral Triggers in LIGO Data
Presented is a summary of studies by the LIGO Scientific Collaboration's
Inspiral Analysis Group on the development of possible vetoes to be used in
evaluation of data from the first two LIGO science data runs. Numerous
environmental monitor signals and interferometer control channels have been
analyzed in order to characterize the interferometers' performance. The results
of studies on selected data segments are provided in this paper. The vetoes
used in the compact binary inspiral analyses of LIGO's S1 and S2 science data
runs are presented and discussed.Comment: Submitted to Classical and Quantum Gravity for the GWDAW-8
proceeding
The Temperature Evolution of the Out-of-Plane Correlation Lengths of Charge-Stripe Ordered La(1.725)Sr(0.275)NiO(4)
The temperature dependence of the magnetic order of stripe-ordered
La(1.725)Sr(0.275)NiO(4) is investigated by neutron diffraction. Upon cooling,
the widths if the magnetic Bragg peaks are observed to broaden. The degree of
broadening is found to be very different for l = odd-integer and l =
even-integer magnetic peaks. We argue that the observed behaviour is a result
of competition between magnetic and charge order.Comment: 3 figure
Vacuum polarization of scalar fields near Reissner-Nordstr\"{o}m black holes and the resonance behavior in field-mass dependence
We study vacuum polarization of quantized massive scalar fields in
equilibrium at black-hole temperature in Reissner-Nordstr\"{o}m background. By
means of the Euclidean space Green's function we analytically derive the
renormalized expression at the event horizon with the area
. It is confirmed that the polarization amplitude
is free from any divergence due to the infinite red-shift
effect. Our main purpose is to clarify the dependence of on
field mass in relation to the excitation mechanism. It is shown for
small-mass fields with how the excitation of
caused by finite black-hole temperature is suppressed as increases, and it
is verified for very massive fields with that
decreases in proportion to with the amplitude equal to the
DeWitt-Schwinger approximation. In particular, we find a resonance behavior
with a peak amplitude at in the field-mass dependence of
vacuum polarization around nearly extreme (low-temperature) black holes. The
difference between Scwarzschild and nearly extreme black holes is discussed in
terms of the mass spectrum of quantum fields dominant near the event horizon.Comment: 24 pages, 1 figure Accepted in PR
Crossover from Percolation to Self-Organized Criticality
We include immunity against fire as a new parameter into the self-organized
critical forest-fire model. When the immunity assumes a critical value,
clusters of burnt trees are identical to percolation clusters of random bond
percolation. As long as the immunity is below its critical value, the
asymptotic critical exponents are those of the original self-organized critical
model, i.e. the system performs a crossover from percolation to self-organized
criticality. We present a scaling theory and computer simulation results.Comment: 4 pages Revtex, two figures included, to be published in PR
Receiver Architectures for MIMO-OFDM Based on a Combined VMP-SP Algorithm
Iterative information processing, either based on heuristics or analytical
frameworks, has been shown to be a very powerful tool for the design of
efficient, yet feasible, wireless receiver architectures. Within this context,
algorithms performing message-passing on a probabilistic graph, such as the
sum-product (SP) and variational message passing (VMP) algorithms, have become
increasingly popular.
In this contribution, we apply a combined VMP-SP message-passing technique to
the design of receivers for MIMO-ODFM systems. The message-passing equations of
the combined scheme can be obtained from the equations of the stationary points
of a constrained region-based free energy approximation. When applied to a
MIMO-OFDM probabilistic model, we obtain a generic receiver architecture
performing iterative channel weight and noise precision estimation,
equalization and data decoding. We show that this generic scheme can be
particularized to a variety of different receiver structures, ranging from
high-performance iterative structures to low complexity receivers. This allows
for a flexible design of the signal processing specially tailored for the
requirements of each specific application. The numerical assessment of our
solutions, based on Monte Carlo simulations, corroborates the high performance
of the proposed algorithms and their superiority to heuristic approaches
Renormalization group approach to the critical behavior of the forest fire model
We introduce a Renormalization scheme for the one and two dimensional
Forest-Fire models in order to characterize the nature of the critical state
and its scale invariant dynamics. We show the existence of a relevant scaling
field associated with a repulsive fixed point. This model is therefore critical
in the usual sense because the control parameter has to be tuned to its
critical value in order to get criticality. It turns out that this is not just
the condition for a time scale separation. The critical exponents are computed
analytically and we obtain , and ,
respectively for the one and two dimensional case, in very good agreement with
numerical simulations.Comment: 4 pages, 3 uuencoded Postcript figure
Two routes to magnetic order by disorder in underdoped cuprates
We study disorder-induced magnetism within the Gutzwiller approximation
applied to the t-J model relevant for cuprate superconductors. In particular,
we show how disorder generates magnetic phases by inducing local droplets of
antiferromagnetic order which eventually merge, and form a quasi-long range
ordered state in the underdoped regime. We identify two distinct
disorder-induced magnetic phases of this type depending on the strength of the
scatterers. For weak potential scatterers used to model dopant disorder, charge
reorganization may push local regions in-between the impurities across the
magnetic phase boundary, whereas for strong scatterers used to model
substitutional ions, a local static magnetic moment is formed around each
impurity. We calculate the density of states and find a remarkably universal
low-energy behavior largely independent of both disorder and magnetization.
However, the magnetic regions are characterized by larger (reduced)
superconducting gap (coherence peaks) and a sub-gap kink in the density of
states.Comment: 9 pages, 7 figure
Validation and analysis of regional present-day climate and climate change simulations over Europe
In the European Commission (EC) project "Regionalization of Anthropogenic Climate Change Simulations, RACCS, recently terminated, 11 European institutions have carried out tests of dynamical and statistical regionalization techniques. The outcome of the "dynamical part" of the project, utilizing a series of high resolution LAMs and a variable resolution global model (all of which we shall refer to as RCMs, Regional Climate Models), is presented here. The per- formance of the dqterent LAMs had first, in a preceding EC project, been tested with "perfect" boundary forcing fields (ECMWF analyses) and also multi-year present-day climate simula- tions with AMIP "perfect ocean " or mixed layer ocean GCM boundary conditions had been validated against available climatological data. The present report involves results of vali- dation and analysis of RCM present-day climate simulations and anthropogenic climate change experiments. Multi-year (5 - 30 years) present-day climate simulations have been per- formed with resolutions between 19 and 70 km (grid lengths) and with boundary conditions from the newest CGCM simulations. The climate change experiments involve various 2xCO2 - ]xCO2 transient greenhouse gas experiments and in one case also changing sulphur aerosols. A common validation and inter-comparison was made at the coordinating institution, MPIfor Meteorology. The validation of the present-day climate simulations shows the importance of systematic errors in the low level general circulation. Such errors seem to induce large errors in precipitation and surface air temperature in the RCMs as well as in the CGCMs providing boundary conditions. Over Europe the field of systematic errors in the mean sea level pressure (MSLP) usually involve an area of too low pressure, often in the form of an east-west trough across Europe with too high pressure to the north and south. New storm-track analyses confirm that the areas of too low pressure are caused by enhanced cyclonic activity and similarly that the areas of too high pressure are caused by reduced such activity. The precise location and strength of the extremes in the MSLP error field seems to be dependent on the physical param- eterization package used. In model pairs sharing the same package the area of too low pressure is deepened further in the RCM compared to the corresponding CGCM, indicating an increase of the excessive cyclonic activity with increasing resolution. From the experiments performed it seems not possible to decide to what extent the systematic errors in the general circulation are the result of local errors in the physical parameterization schemes or remote errors trans- mitted to the European region via the boundary conditions. Additional errors in precipitation and temperature seems to be due to direct local effects of errors in certain parameterization schemes and errors in the SSTs taken from the CGCMs. For all seasons many biases are fOund to be statistically significant compared to estimates of the internal model variability of the time- slice mean values. In the climate change experiments statistically significant European mean temperature changes which are large compared to the corresponding biases are found. How- ever, the changes in the deviations from the European mean temperature as well as the changes in precipitation are only partly sign wcan ce and are of the same order of magnitude or smaller than the corresponding biases found in the present-day climate simulations. Cases of an inter- action between the systematic model errors and the radiative forcing show that generally the errors are not canceling out when the changes are computed. Therefore, reliable regional cli- mate changes can only be achieved after model improvements which reduce their systematic errors sufficiently. Also in future RCM experiments sujiciently long time-slices must be used in order to obtain statistically sign ijicant climate changes on the sub-continental scale aimed at with the present regionalization technique
- …