15 research outputs found

    Stanovenie bielkovín v rôznych krmivách metódou in sacco v porovnaní s metódou CNCPS

    Get PDF
    The aim of this study was to determine the correlations between the output parameters of the in sacco method and the CNCPS method (Cornell Net Carbohydrate and Protein System). Both methods were tested on 106 samples from the feeds classified into following categories: extracted meal and cakes, cereals, legumes, maize and alfalfa silage, other silages, DDGS (dried distiller’s grains with solubles), oilseeds and various hays. The effective degradability of crude protein (EDg CP) by the in sacco method varied depending on the type of feed from 44.97% (hays) to 82.59% (alfalfa silage). The lowest degradation parameter of rapidly degraded fraction (a=24.3%) and the highest potentially degraded fraction (b=70.52%) were found in oilseeds. Five nitrogen fractions (A, B1, B2, B3, C) were determined according to the CNCPS method. Fraction A (NPN – non-protein nitrogen) was different in examined feed with the highest in silages (44.95% of the total CP). Fraction B2 represented in tested feeds the highest part of the total CP, (except for silages, legumes, and oilseeds). Fraction B3 ranged from 1.96% (legumes) to 19.25% (hays) of the total CP. The correlation between EDg CP and soluble fractions was low (r=0.5464) in concentrate feeds, the correlation between EDg and soluble fractions was (r=0.6323) also low in forages.Cieľom tohto príspevku bolo stanoviť korelačné vzťahy medzi výstupnými parametrami metódy in sacco a metódy CNCPS (Cornell Net Carbohydrate and Protein System). Metódy in sacco a CNCPS boli testované na rôznych krmivách (n=106). Krmivá boli rozdelené do jednotlivých kategórií: extrahované šroty a výlisky, obilniny, strukoviny, kukuričná a lucernová siláž, ostatné siláže, DDGS (sušené liehovarnícke výpalky s rozpustnými zložkami), olejniny a rôzne seno. Efektívna degradovateľnosť dusíkatých látok (EDg N-látok) metódou in sacco sa pohybovala v závislosti od typu krmiva od 44,97 % (seno) do 82,59 % (lucernová siláž). Najnižší parameter rozpustnej a degradovateľnej frakcie (a) a najvyššia nerozpustná a degradovateľná frakcia (b) bola zistená v olejnatých semenách (70,52 %). Päť dusíkových frakcií (A, B1, B2, B3, C) bolo stanovených podľa metódy CNCPS. Frakcia A (NPN - nebielkovinový dusík) bola v skúmanom krmive odlišná, najvyššia v silážach (44,94 % z celkových dusíkatých látok). Frakcia B2 predstavovala v testovaných krmivách najvyšší podiel z celkových dusíkatých látok, okrem siláží. Frakcia B3 sa pohybovala od 1,96 % (strukoviny) do 19,25 % (seno) z celkových dusíkatých látok. Korelácia pre jadrové krmivá medzi EDg N-látok a rozpustnými frakciami bola slabá (r=0,5464). Podobne to bolo aj u objemových krmív, kde korelácia medzi EDg N-látok a rozpustnými frakciami bola r=0,6323

    The effect of different dietary zinc sources on mineral deposition and antioxidant indices in rabbit tissues

    Get PDF
    [EN] The purpose of this study was to compare the effect of dietary zinc from inorganic and organic sources on the concentration of Zn, Cu, Mn and Fe in plasma, tissues and faeces of rabbits. Simultaneously, the activities of total superoxide dismutase (SOD), specific Cu/Zn SOD, glutathione peroxidase (GPx), lipid peroxidation and total antioxidant capacity (TAC) in liver and kidney were also determined. Ninety-six 49-day-old broiler rabbits were allocated to 4 dietary treatments, each replicated 6 times with 4 animals per replicate. For the subsequent 6 wk, the rabbits were fed an identical basal diet (BD) supplemented with an equivalent dose of Zn (100 mg/kg) from different sources. Group 1 (control) received the unsupplemented BD, while the BD for groups 2, 3 and 4 was supplemented with Zn from Zn sulphate, Zn chelate of glycine hydrate (Zn-Gly) and Zn chelate of protein hydrolysate (Zn-Pro), respectively. The intake of dietary Zn sulphate resulted in an increase in Zn plasma concentration (1.85 vs. 1.48 mg/L; P<0.05) compared to the control group. Feeding the diets enriched with Zn increased the deposition of Zn in the liver (P<0.05), irrespective of the Zn source. The addition of Zn-Pro resulted in significantly higher Cu uptake in liver (P<0.05) than in the control and Zn sulphate group (56.0 vs. 35.0 and 36.7 mg/kg dry matter (DM), respectively). Neither Mn nor Fe concentration in plasma and tissues were affected by dietary Zn supplementation, with the exception of Fe deposition in muscle, which was significantly decreased (P<0.05) in rabbits supplemented with inorganic Zn sulphate compared to control and Zn-Gly group (9.8 vs. 13.3 and 12.2 mg/kg DM, respectively). Intake of organic Zn-Gly significantly increased the activities of total SOD (43.9 vs. 35.9 U/mg protein; P<0.05) and Cu/Zn SOD (31.1 vs. 23.8 U/mg protein; P<0.01) as well as TAC (37.8 vs. 31.2 μmol/g protein; P<0.05) in the kidney when compared to that of the control group. The presented results did not indicate any differences between dietary Zn sources in Zn deposition and measured antioxidant indices in rabbit tissues. Higher dietary Zn intake did not cause any interactions with respect to Mn, Cu and Fe deposition in liver and kidney tissues, but did increase the faecal mineral concentrations. Dietary organic Zn-Gly improved the antioxidant status in rabbit kidney.This work was supported by the Slovak Research and Development Agency under contract nº. APVV-0667-12 and by the project ITMS 26220220204.Čobanová, K.; Chrastinová, Ľ.; Chrenková, M.; Polačiková, M.; Formelová, Z.; Ivanišinová, O.; Ryzner, M.... (2018). The effect of different dietary zinc sources on mineral deposition and antioxidant indices in rabbit tissues. World Rabbit Science. 26(3):241-248. https://doi.org/10.4995/wrs.2018.9206SWORD241248263Alscher D.M., Braun N., Biegger D., Stuelten C., Gawronski K., Mürdter T.E., Kuhlmann U., Fritz P. 2005. Induction of metallothionein in proximal tubular cells by zinc and its potential as an endogenous antioxidant. Kidney Blood Press Res., 28: 127-133. https://doi.org/10.1159/000084921Ao T., Pierce J.L., Power R., Pescatore A.J., Cantor A.H., Dawson K.A., Ford M.J. 2009. Effects of feeding different forms of zinc and copper on the performance and tissue mineral content of chicks. Poultry Sci., 88: 2171-2175. https://doi.org/10.3382/ps.2009-00117AOAC 2005. Official Methods of Analysis. 18th Edition. Association of Official Analytical Chemists, Gaithersburg, USA.Bao Y.M., Choct M., Iji P.A., Brueton K. 2007. Effect of organically complexed copper, iron, manganese and zinc on broiler performance, mineral excretion and accumulation in tissues. J. Appl. Poult, Res., 16: 448-455. https://doi.org/10.1093/japr/16.3.448Benzie I.F.F., Strain J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "Antioxidant Power": The FRAP Assay. Anal. Biochem., 239: 70-76. https://doi.org/10.1006/abio.1996.0292Bulbul A.T., Bulbul S., Kucukersan M., Sireli M., Eryavuz A. 2008. Effect of dietary supplementation of organic and inorganic Zn, Cu and Mn on oxidant/antioxidant balance in laying hens. Kafkas Univ. Vet. Fak., 14: 19-24.Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem., 72: 248-254.https://doi.org/10.1016/0003-2697(76)90527-3Casado C., Moya V.J., Pascual J.J., Blas E., Cervera C. 2011. Effect of oxidation state of dietary sunflower oil and dietary zinc and α-tocopheryl acetate supplementation on performance of growing rabbits. World Rabbit Sci., 19: 191-202. https://doi.org/10.4995/wrs.2011.940Cortese M.M., Suschek C.V., Wetzel W., Kroncke K.D., Kolb-Bachofen V. 2008. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med., 44: 2002-2012. https://doi.org/10.1016/j.freeradbiomed.2008.02.013Farombi E.O., Hansen M., Raven-Haren G., Moller P., Dragsted L.O. 2004. Commonly consumed and naturally occuring dietary substances affect biomarkers of oxidative stress and DNA damage in the healthy rats. Food Chem. Toxicol., 2: 15-22.Gresakova L., Venglovska K., Cobanova K. 2016. Dietary manganese source does not affect Mn, Zn and Cu tissue deposition and the activity of manganese-containing enzymes in lambs. J. Trace Elem. Med. Biol. 38: 138-143. https://doi.org/10.1016/j.jtemb.2016.05.003Chrastinová Ľ., Čobanová K., Chrenková M., Poláčiková M., Formelová Z., Lauková A., Ondruška Ľ., Pogány Simonová M., Strompfová V., Mlyneková Z., Kalafová A., Grešáková Ľ. 2016. Effect of dietary zinc supplementation on nutrient digestibility and fermentation characteristics of caecal content in physiological experiment with young rabbits. Slovak J. Anim. Sci., 49: 23-31.Ivanišinová O., Grešáková Ľ., Ryzner M., Oceľová V., Čobanová K. 2016. Effects of feed supplementation with various zinc sources on mineral concentration and selected antioxidant indices in tissues and plasma of broiler chickens. Acta Vet. Brno, 85: 285-291. https://doi.org/10.2754/avb201685030285Jo C., Ahn D.U. 1998. Fluorometric analysis of 2-thiobarbituric acid reactive substances in turkey. Poultry Sci., 77: 475-480. https://doi.org/10.1093/ps/77.3.475King J.C., Brown K.H., Gibson R.S., Krebs N.F., Lowe N.M., Siekmann J.H., Raiten D.J. 2016. Biomarkers of nutrition for development (BOND) - Zinc review. J. Nutr., 146: 858S-885S. https://doi.org/10.3945/jn.115.220079King J.C., Shames D.M., Woodhouse L.R. 2000. Zinc homeostasis in humans. J. Nutr., 130: 1360S-1366S. https://doi.org/10.1093/jn/130.5.1360SKwiecien M., Winiarska-Mieczan A., Milczarek A., Klebaniuk R. 2017. Biological response of broiler chickens to decreasing dietary inclusion levels of zinc glycine chelate. Biol. Trace Elem. Res., 175: 204-213. https://doi.org/10.1007/s12011-016-0743-yMa W., Niu H., Feng J., Wang Y., Feng J. 2011. Effects of zinc glycine chelate on oxidative stress, contents of trace elements, and intestinal morphology in broilers. Biol. Trace Elem. Res., 142: 546-556. https://doi.org/10.1007/s12011-010-8824-9Marklund S., Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.xNessrin S., Abdel-Khalek A.M., Gad S.M. 2012. Effect of supplemental zinc, magnesium or iron on performance and some physiological traits of growing rabbits. Asian J. Poult. Sci., 6: 23-30. https://doi.org/10.3923/ajpsaj.2012.23.30Nutritional Research Council (NRC), 1977. Nutrient requirements of rabbits. National Academies of Science, Washington DC, USA.Oteiza P.I. 2012. Zinc and the modulation of redox homeostasis. Free Radic. Biol. Med., 53: 1748-1759. https://doi.org/10.1016/j.freeradbiomed.2012.08.568Paglia D.E., Valentine W.N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 70: 158-169.Powell S.R. 2000. The antioxidant properties of zinc. J. Nutr., 130: 1447S-1454S. https://doi.org/10.1093/jn/130.5.1447SSalomonsson A.C., Theander O., Westerlund O. 1984. Chemical characterization of some Swedish cereals whole meal and bran fractions. Swedish J. Agric. Res. 14: 11-117.Skřivan M., Skřivanová V., Marounek M. 2005. Effects of dietary zinc, iron, and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil, and herbage. Poultry Sci. 84: 1570-1575. https://doi.org/10.1093/ps/84.10.1570Spears, J.W. 1996. Optimizing mineral levels and sources for farm animals. In Kornegay E.T. (ed). Nutrient Management of Food Animals to Enhance and Protect the Environment, CRC Press, Inc., Boca Raton, FL, 259-275.Sunder G.S., Kumar V.C., Panda A.K., Raju M.V.L.N., Rao S.V.R. 2013. Effect of supplemental organic Zn and Mn on broiler performance, bone measures, tissue mineral uptake and immune response at 35 d of age. Curr. Res. Poult. Sci., 3: 1-11. https://doi.org/10.3923/crpsaj.2013.1.11Suttle N.F. 2010. Mineral nutrition of livestock, 4th Edition. CABI Publishing, Wallingford, Oxfordshire, UK. https://doi.org/10.1079/9781845934729.0000Swiatkiewicz S., Arczewska-Wlosek A., Jozefiak D. 2014. The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. World Poultry Sci. J., 70:475-485. https://doi.org/10.1017/S0043933914000531Van Soest P.J., Robertson J.B., Lewis B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Diary Sci., 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2Wiseman J., Villamide M.J., De Blas C., Carabaño M.J., Carabaño R.M. 1992. Prediction of the digestible energy and digestibility of gross energy of feed for rabbits. 1. Individual classes of feeds. Anim. Feed Sci. Technol., 39: 27-38. https://doi.org/10.1016/0377-8401(92)90029-6Yan J.Y., Zhang G.W., Zhang C., Tang L., Kuang S.Y. 2017. Effect of dietary organic zinc sources on growth performance, incidence of diarrhoea, serum and tissue zinc concentrations, and intestinal morphology in growing rabbits. World Rabbit Sci., 25: 43-49. https://doi.org/10.4995/wrs.2017.577

    Beneficial effects of Enterococcus faecium EF9a administration in rabbit diet

    Full text link
    [EN] Forty-eight rabbits aged five weeks (Hycole breed, both sexes) were divided into experimental (EG) and control (CG) groups, 24 animals in each, and fed a commercial diet with access to water ad libitum. Rabbits in EG had Enterococcus faecium EF9a probiotic strain added to their drinking water (1.0×109 colony forming units/mL 500 μL/d/animal) for 28 d (between 35 and 63 d). The experiment lasted for 42 d. The animals remained in good health condition throughout the experiment, and no morbidity and mortality was noted. There was a higher live weight at 63 d of age (+34 g; P&lt;0.0001), final live weight at 77 d of age (+158 g; P=0.0483), and average daily weight gain between 63 and 77 d of age in the EG group rabbits than in CG group rabbits (+8 g/d; P&lt;0.0001). No significant changes in caecal lactic acid and total volatile fatty acid concentrations, jejunal morphological parameters and phagocytic activity were noted during the treatment. The tested serum parameters were within the range of the reference values. EF9a strain sufficiently established itself in the rabbit’s gastrointestinal tract. At 63 d of age, a significant decrease in coliforms (P&lt;0.05), coagulase-positive staphylococci (P&lt;0.01), pseudomonads (P&lt;0.01) and coagulasenegative staphylococci (CoNS, P&lt;0.001) was noted in the faeces of the EG group rabbits compared to the CG rabbits. Antimicrobial effects of EF9a strain in the caecum against coliforms (P&lt;0.001), CoNS (P=0.0002) and pseudomonads (P=0.0603) and in the appendix (coliforms, P&lt;0.05) were detected.Slovak – Hungarian project APVV:SK-HU-0006-08 and the national VEGA project 2/0006/17 This work was financially supported by the bilateral Slovak – Hungarian project APVV:SK-HU-0006-08 and the national VEGA project 2/0006/17. Part of the preliminary results was presented in the Proceedings from the Conference in Kaposvár, Hungary, 30.05.2012, pp. 89-92. We are grateful to Mrs. M. Bodnárová and Mr. P. Jerga for their skilful technical assistance. We are also grateful to Dr. V. Párkányi and Dr. R. Jurčík, from the National Agricultural and Food Centre in Nitra for blood sampling and Mr. J. Pecho for slaughtering. All care and experimental procedures involving animals followed the guidelines stated in the Guide for the Care and Use of Laboratory Animals and the trials were accepted by the Ethic Commission of the Institute of Animal Physiology in Košice and by the Slovak Veterinary and Food Administration. We would like to thank to Mr. A. Billingham for English language correction.Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Plachá, I.; Szabóová, R.; Kandričáková, A.; Žitňan, R.... (2020). Beneficial effects of Enterococcus faecium EF9a administration in rabbit diet. World Rabbit Science. 28(4):169-179. https://doi.org/10.4995/wrs.2020.11189OJS16917928

    XXIV. mezinárodní kolokvium o regionálních vědách

    Get PDF
    Title in English: 24th International Colloquium on Regional Sciences: Conference proceedings. The conference proceedings consists of papers presented at the 24rd International Colloquium on Regional Sciences that was organized by Department of Regional Economics and Administration FEA MU. It contains 79 articles arranged by topic. The individual articles deal with e.g. socioeconomic disparities among regions, regional policy, territory attractiveness, tourism or regional public administration

    Causes, diagnosis and ways and means of influence of postpartum hemorrhage

    No full text
    V bakalářské práci se autorka zabývá poporodním krvácením, příčinám, diagnostice a metodami jeho ovlivnění. Práce je rozdělena do dvou částí. V bloku Poporodní krvácení je seznamení s anatomií ženských pohlavních orgánů a problematikou poporodního krvácení. Blok druhý byl vytvořen pomocí retrospektivní studie z dokumentací archivovaných v archivu PKN a.s. V závěru této práce je uveden seznam literatury, zkratek a také přílohy.In this bachelor thesis the author pays attention to reasons, diagnostics and options of influence of postpartum hemorrhage. The author divided the thesis into two blocks. In the block Postpartum hemorrhage the author acquainted with the anatomic of woman´s organs and problems of postpartum hemorrhage. The secondary block was created on base retrospective study from documents in hospital in Pardubice. The conclusion of my work includes a list of literature, abbreviations and attachments.Katedra porodní asistenceDokončená práce s úspěšnou obhajobo

    Modernizácia výroby rukavic

    No full text

    Nutrition of People with Celiac Disease

    No full text
    Abstract Cereals and legumes rank among the most important group of crop plant production. The aim of this paper was to point out the suitability of cereals and legumes in the diet of people living with an autoimmune disease of the small intestine, the celiac disease. Cereals match the best current ideas of healthy and balanced diet and provide decisive part of the energy intake from food in human nutrition and no small share from the total protein intake. Some cereals contain celiac active polypeptides and in susceptible individuals cause allergic reactions. Celiac active ingredients are found in the prolamin fraction. If the content of prolamine is in an amount of 4-8%, the products can be considered appropriate for the celiac diet. Wheat, barley, rye and oat should be excluded from the diet, if a person has confirmed celiac disease. On a worldwide basis, legumes contribute to about one-third of humankind&apos;s direct protein intake. Legumes also accumulate natural products (secondary metabolites) such as isoflavonoids that are considered beneficial to human health through anticancer and other health-promoting activities. The biggest advantage of legumes is that they are gluten-free and are suitable for gluten-free diet

    Preventive Potential of Dipeptide Enterocin A/P on Rabbit Health and Its Effect on Growth, Microbiota, and Immune Response

    No full text
    The present study investigated the effect of the dipeptide enterocin (Ent) A/P on growth, immune response, and intestinal microbiota in rabbits. Eighty-eight rabbits (aged five weeks, M91 meat line, both sexes) were divided into three experimental groups: E (Ent A/P; 50 &micro;L/animal/day for 14 days; between 0&ndash;14 days); S (methicillin-resistant Staphylococcus epidermidis SE P3/Tr2a strain; 500 &micro;L/animal/day for 7 days starting at day 14 to day 21); and E + S (Ent A/P between 0&ndash;14 days and SE P3/Tr2a strain between 14&ndash;21 days) groups, and the control group (C). The additives were administered in drinking water. Administration of Ent A/P lead to an increase in weight gain, reduction of feed conversion; phagocytic activity was stimulated and gut microbiota were optimized due to reduction of coliforms, total bacterial count, and methicillin-resistant staphylococci. Good health and increased weight gain also showed that methicillin-resistant S. epidermidis SE P3/Tr2a strain did not have any pathogenic effect on rabbits&rsquo; health status
    corecore