19,515 research outputs found
Chapman-Enskog expansion about nonequilibrium states: the sheared granular fluid
The Chapman-Enskog method of solution of kinetic equations, such as the
Boltzmann equation, is based on an expansion in gradients of the deviations fo
the hydrodynamic fields from a uniform reference state (e.g., local
equilibrium). This paper presents an extension of the method so as to allow for
expansions about \emph{arbitrary}, far-from equilibrium reference states. The
primary result is a set of hydrodynamic equations for studying variations from
the arbitrary reference state which, unlike the usual Navier-Stokes
hydrodynamics, does not restrict the reference state in any way. The method is
illustrated by application to a sheared granular gas which cannot be studied
using the usual Navier-Stokes hydrodynamics.Comment: 23 pages, no figures. Submited to PRE Replaced to correct misc.
errors Replaced to correct misc. errors, make notation more consistant,
extend discussio
Evaluation of Eta Model seasonal precipitation forecasts over South America
International audienceSeasonal forecasts run by the Eta Model over South America were evaluated with respect to precipitation predictability at different time scales, seasonal, monthly and weekly for one-year period runs. The model domain was configured over most of South America in 40km horizontal resolution and 38 layers. The lateral boundary conditions were taken from CPTEC GCM forecasts at T62L28. The sea surface temperature was updated daily with persisted anomaly during the integrations. The total time integration length was 4.5 months. The Eta seasonal forecasts represented reasonably well the large scale precipitation systems over South America such as the Intertropical Convergence Zone and the South Atlantic Convergence Zone. The total amounts were comparable to observations. The season total precipitation forecasts from the driver model exhibited large overestimate. In general, the largest precipitation errors were found in ASON season and the smallest in FMAM. The major error areas were located along the northern and northeastern coast and over the Andes. These areas were present in both models. The monthly precipitation totals indicated that the intra-seasonal variability, such as the monsoonal onset, was reasonably captured by the model. The equitable threat score and the bias score showed that the Eta Model forecasts had higher precipitation predictability over the Amazon Region and lower over Northeast Brazil. The evaluation of the precipitation forecast range showed that at the fourth month the forecast skill was still comparable to the first month of integration. Comparisons with the CPTEC GCM forecasts showed that the Eta improved considerably the forecasts from the driver model. Five-member ensemble runs were produced for the NDJF rainy season. Both driver model and Eta Model forecasts showed some internal variability in the SACZ and over the Andes regions. Comparison of the Eta Model seasonal forecasts against climatology showed that in general the model produced additional useful information over the climatology. Transient variability was evaluated by tracking the frontal passages along the eastern coast. The frontal timing was no longer captured by the model but some indication of the frequency and of the northward movement was given by the model forecast. Weekly precipitation totals were evaluated for the São Francisco Basin. Some parameters, such as the mean and the standard deviation of the 7-day total precipitation, were comparable to observations. The correlations between the forecast and the observed 7-day series were positive, but low
Superconductivity and Cobalt Oxidation State in Metastable Na(x)CoO(2-delta)*yH2O (x ~ 1/3; y ~ 4x)
We report the synthesis and superconducting properties of a metastable form
of the known superconductor NaxCoO2*yH2O (x ~ 1/3, y ~ 4x). Instead of using
the conventional bromine-acetonitrile mixture for sodium deintercalation, we
use an aqueous bromine solution. Using this method, we oxidize the sample to a
point that the sodium cobaltate becomes unstable, leading to formation of other
products if not controlled. This compound has the same structure as the
reported superconductor, yet it exhibits a systematic variation of the
superconducting transition temperature (Tc) as a function of time. Immediately
after synthesis, this compound is not a superconductor, even though it contains
appropriate amounts of sodium and water. The samples become superconducting
with low Tc values after ~ 90 h. Tc continually increases until it reaches a
maximum value (4.5 K) after about 260 h. Then Tc drops drastically, becoming
non-superconducting approximately 100 h later. Corresponding time-dependent
neutron powder diffraction data shows that the changes in superconductivity
exhibited by the metastable cobaltate correspond to slow formation of oxygen
vacancies in the CoO2 layers. In effect, the formation of these defects
continually reduces the cobalt oxidation state causing the sample to evolve
through its superconducting life cycle. Thus, the dome-shaped superconducting
phase diagram is mapped as a function of cobalt oxidation state using a single
sample. The width of this dome based on the formal oxidation state of cobalt is
very narrow - approximately 0.1 valence units wide. Interestingly, the maximum
Tc in NaxCoO2*yH2O occurs when the cobalt oxidation state is near 3.5. Thus, we
speculate that the maximum Tc occurs near the charge ordered insulating state
that correlates with the average cobalt oxidation state of 3.5.Comment: 22 pages, 9 figures, 1 tabl
^{59}Co NMR evidence for charge ordering below T_{CO}\sim 51 K in Na_{0.5}CoO_2
The CoO layers in sodium-cobaltates NaCoO may be viewed as
a spin triangular-lattice doped with charge carriers. The underlying
physics of the cobaltates is very similar to that of the high cuprates.
We will present unequivocal Co NMR evidence that below ,
the insulating ground state of the itinerant antiferromagnet
NaCoO () is induced by charge ordering.Comment: Phys. Rev. Lett. 100 (2008), in press. 4 figure
Surface roughness during depositional growth and sublimation of ice crystals
Full version of an earlier discussion paper (Chou et al. 2018)Ice surface properties can modify the scattering properties of atmospheric ice crystals and therefore affect the radiative properties of mixed-phase and cirrus clouds. The Ice Roughness Investigation System (IRIS) is a new laboratory setup designed to investigate the conditions under which roughness develops on single ice crystals, based on their size, morphology and growth conditions (relative humidity and temperature). Ice roughness is quantified through the analysis of speckle in 2-D light-scattering patterns. Characterization of the setup shows that a supersaturation of 20 % with respect to ice and a temperature at the sample position as low as-40 °C could be achieved within IRIS. Investigations of the influence of humidity show that higher supersaturations with respect to ice lead to enhanced roughness and irregularities of ice crystal surfaces. Moreover, relative humidity oscillations lead to gradual ratcheting-up of roughness and irregularities, as the crystals undergo repeated growth-sublimation cycles. This memory effect also appears to result in reduced growth rates in later cycles. Thus, growth history, as well as supersaturation and temperature, influences ice crystal growth and properties, and future atmospheric models may benefit from its inclusion in the cloud evolution process and allow more accurate representation of not just roughness but crystal size too, and possibly also electrification properties.Peer reviewe
Neutron scattering study of novel magnetic order in Na0.5CoO2
We report polarized and unpolarized neutron scattering measurements of the
magnetic order in single crystals of Na0.5CoO2. Our data indicate that below
T_N=88 K the spins form a novel antiferromagnetic pattern within the CoO2
planes, consisting of alternating rows of ordered and non-ordered Co ions. The
domains of magnetic order are closely coupled to the domains of Na ion order,
consistent with such a two-fold symmetric spin arrangement. Magnetoresistance
and anisotropic susceptibility measurements further support this model for the
electronic ground state.Comment: 4 pages, 4 figure
Magnetic susceptibility study of hydrated and non-hydrated NaxCoO2-yH2O single crystals
We have measured the magnetic susceptibility of single crystal samples of
non-hydrated NaxCoO2 (x ~ 0.75, 0.67, 0.5, and 0.3) and hydrated Na0.3CoO2-yH2O
(y ~ 0, 0.6, 1.3). Our measurements reveal considerable anisotropy between the
susceptibilities with H||c and H||ab. The derived anisotropic g-factor ratio
(g_ab/g_c) decreases significantly as the composition is changed from the
Curie-Weiss metal with x = 0.75 to the paramagnetic metal with x = 0.3. Fully
hydrated Na0.3CoO2-1.3H2O samples have a larger susceptibility than
non-hydrated Na0.3CoO2 samples, as well as a higher degree of anisotropy. In
addition, the fully hydrated compound contains a small additional fraction of
anisotropic localized spins.Comment: 6 pages, 5 figure
- …