29 research outputs found
Genome-wide association of familial late-onset alzheimer's disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE
Late-onset Alzheimer's disease (LOAD) is the most common form of dementia in the elderly. The National Institute of Aging-Late Onset Alzheimer's Disease Family Study and the National Cell Repository for Alzheimer's Disease conducted a joint genome-wide association study (GWAS) of multiplex LOAD families (3,839 affected and unaffected individuals from 992 families plus additional unrelated neurologically evaluated normal subjects) using the 610 IlluminaQuad panel. This cohort represents the largest family-based GWAS of LOAD to date, with analyses limited here to the European-American subjects. SNPs near APOE gave highly significant results (e.g., rs2075650, p = 3.2×10-81), but no other genome-wide significant evidence for association was obtained in the full sample. Analyses that stratified on APOE genotypes identified SNPs on chromosome 10p14 in CUGBP2 with genome-wide significant evidence for association within APOE ε4 homozygotes (e.g., rs201119, p = 1.5×10-8). Association in this gene was replicated in an independent sample consisting of three cohorts. There was evidence of association for recently-reported LOAD risk loci, including BIN1 (rs7561528, p = 0.009 with, and p = 0.03 without, APOE adjustment) and CLU (rs11136000, p = 0.023 with, and p = 0.008 without, APOE adjustment), with weaker support for CR1. However, our results provide strong evidence that association with PICALM (rs3851179, p = 0.69 with, and p = 0.039 without, APOE adjustment) and EXOC3L2 is affected by correlation with APOE, and thus may represent spurious association. Our results indicate that genetic structure coupled with ascertainment bias resulting from the strong APOE association affect genome-wide results and interpretation of some recently reported associations. We show that a locus such as APOE, with large effects and strong association with disease, can lead to samples that require appropriate adjustment for this locus to avoid both false positive and false negative evidence of association. We suggest that similar adjustments may also be needed for many other large multi-site studies. © 2011 Wijsman et al
Genome‐wide survey in African Americans demonstrates potential epistasis of fitness in the human genome
The role played by epistasis between alleles at unlinked loci in shaping population fitness has been debated for many years and the existing evidence has been mainly accumulated from model organisms. In model organisms, fitness epistasis can be systematically inferred by detecting nonindependence of genotypic values between loci in a population and confirmed through examining the number of offspring produced in two‐locus genotype groups. No systematic study has been conducted to detect epistasis of fitness in humans owing to experimental constraints. In this study, we developed a novel method to detect fitness epistasis by testing the correlation between local ancestries on different chromosomes in an admixed population. We inferred local ancestry across the genome in 16,252 unrelated African Americans and systematically examined the pairwise correlations between the genomic regions on different chromosomes. Our analysis revealed a pair of genomic regions on chromosomes 4 and 6 that show significant local ancestry correlation (P‐value = 4.01 × 10−8) that can be potentially attributed to fitness epistasis. However, we also observed substantial local ancestry correlation that cannot be explained by systemic ancestry inference bias. To our knowledge, this study is the first to systematically examine evidence of fitness epistasis across the human genome.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135958/1/gepi22026.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135958/2/gepi22026_am.pd
A Poisson Log-Normal Model for Constructing Gene Covariation Network Using RNA-seq Data
Constructing expression networks using transcriptomic data is an effective approach for studying gene regulation. A popular approach for constructing such a network is based on the Gaussian graphical model (GGM), in which an edge between a pair of genes indicates that the expression levels of these two genes are conditionally dependent, given the expression levels of all other genes. However, GGMs are not appropriate for non-Gaussian data, such as those generated in RNA-seq experiments. We propose a novel statistical framework that maximizes a penalized likelihood, in which the observed count data follow a Poisson log-normal distribution. To overcome the computational challenges, we use Laplace's method to approximate the likelihood and its gradients, and apply the alternating directions method of multipliers to find the penalized maximum likelihood estimates. The proposed method is evaluated and compared with GGMs using both simulated and real RNA-seq data. The proposed method shows improved performance in detecting edges that represent covarying pairs of genes, particularly for edges connecting low-abundant genes and edges around regulatory hubs
Comparison of Hyperspectral Imagery and Physiological Characteristics of Bentazone-Tolerant and -Susceptible Soybean Cultivars
Bentazone is a broadleaf post-emergence herbicide widely used for crop production that inhibits photosynthetic activity, resulting in phytotoxicity and injury in plants. Evaluating and identifying herbicide-tolerant genotypes is a critical step in plant breeding programs. In this study, we determined the reaction of 138 Korean soybean cultivars to bentazone using visual evaluation, and selected cultivars were further evaluated to determine the effects of bentazone on physiological parameters. For physiological parameters, we measured the normalized difference vegetation index (NDVI) from hyperspectral reflectance images. From 2 to 4 DAT, the NDVI for two sensitive cultivars was between 0.60 and 0.69, while the NDVI for tolerant cultivars was between 0.70 and 0.86. Photosynthesis rate (A), transpiration (E), stomatal conductance (gsw), and total conductance of CO2 (gtc) were measured using chlorophyll fluorescence. Visual score evaluation showed that moderate bentazone-tolerant cultivars were predominant among the Korean cultivars. For physiological measurements, differences in NDVI were detected between bentazone-tolerant and -sensitive cultivars 2 days after treatment (DAT). However, the A, E, gsw, and gtc levels dramatically decreased 1 DAT in the sensitive cultivars. This study provides insights into the tolerance and sensitivity of soybeans to bentazone
Correlation between in vitro binding activity of sweeteners to cloned human sweet taste receptor and sensory evaluation
The human sweet taste receptor is a TAS1R2/TAS1R3 heterodimer. To investigate the correlation between the in vitro affinity of sweeteners with stably expressed human sweet taste receptor in HEK-293 cells and human sensory evaluation, the receptor-ligand activity of bulk (sucrose, D-fructose, and allulose) and high-intensity sweeteners (saccharin, rebaudioside A, rebaudioside M, and neohesperidin dihydrochalcone) was compared by analyzing the Ca2+ release. The relative potency of the sweeteners was identified over a wide concentration range for EC(50)s. Relative to sucrose, bulk sweeteners showed similar concentration ranges and potency, whereas high-intensity sweeteners exhibited lower concentration ranges and higher potency. The log of the calculated EC50 of each sweetener relative to sucrose by the in vitro affinity assay was positively correlated (r = 0.9943) with the molar relative sweetness reported in the previous literatures. These results suggested a good correlation between the in vitro activity assay of sweeteners and human sensory evaluation.N
SPAD values of Star and Suziblue at different time and locations.
SPAD values of Star and Suziblue at different time and locations.</p
Additional file 1: of Impact of a bronchial genomic classifier on clinical decision making in patients undergoing diagnostic evaluation for lung cancer
Supplementary materials. (DOCX 194 kb
Can Contactless Volunteer Activities Be an Alternative During the COVID-19 Pandemic?
The purpose of this study is to provide a viable alternative for volunteer services which became inactive due to the COVID-19 pandemic. Accordingly, cases of contactless volunteer work involving children using the M Social Welfare Center located in the city of Paju in Gyeonggi-do Province were studied using reputational case selection. The aforementioned children are children whose parents have hearing disabilities (CODAs: child of deaf adults). In all of the examined cases, six sessions of online volunteer work have been carried out with these children. In-depth interviews were conducted with four participants, two non-participants, two of the twelve youth volunteers, and one social worker. The results of the study were as follows: firstly, there are several advantages to online volunteer work such as providing an alternative to the conventional volunteering method during the COVID-19 pandemic, no restrictions of location or place, recipients having their own private space, and the volunteers and recipients being able to open up to each other and being able to grow together through this process. Secondly, issues to be noted during the process are the characteristics of the recipients, the role of social workers, the education of volunteers and the attitude of the volunteers. Finally, aspects that need to be improved are the recognition of online volunteer hours and paralleling online volunteer work with other volunteer methods when the COVID-19 situation improves in the future. Through these findings, this study suggested practical and policy implications