149 research outputs found
Basic Enhancement Strategies When Using Bayesian Optimization for Hyperparameter Tuning of Deep Neural Networks
Compared to the traditional machine learning models, deep neural networks (DNN) are known to be highly sensitive to the choice of hyperparameters. While the required time and effort for manual tuning has been rapidly decreasing for the well developed and commonly used DNN architectures, undoubtedly DNN hyperparameter optimization will continue to be a major burden whenever a new DNN architecture needs to be designed, a new task needs to be solved, a new dataset needs to be addressed, or an existing DNN needs to be improved further. For hyperparameter optimization of general machine learning problems, numerous automated solutions have been developed where some of the most popular solutions are based on Bayesian Optimization (BO). In this work, we analyze four fundamental strategies for enhancing BO when it is used for DNN hyperparameter optimization. Specifically, diversification, early termination, parallelization, and cost function transformation are investigated. Based on the analysis, we provide a simple yet robust algorithm for DNN hyperparameter optimization - DEEP-BO (Diversified, Early-termination-Enabled, and Parallel Bayesian Optimization). When evaluated over six DNN benchmarks, DEEP-BO mostly outperformed well-known solutions including GP-Hedge, BOHB, and the speed-up variants that use Median Stopping Rule or Learning Curve Extrapolation. In fact, DEEP-BO consistently provided the top, or at least close to the top, performance over all the benchmark types that we have tested. This indicates that DEEP-BO is a robust solution compared to the existing solutions. The DEEP-BO code is publicly available at <uri>https://github.com/snu-adsl/DEEP-BO</uri>
Dynamically controlling the emission of single excitons in photonic crystal cavities
Single excitons in semiconductor microcavities represent a solid-state and
scalable platform for cavity quantum electrodynamics (c-QED), potentially
enabling an interface between flying (photon) and static (exciton) quantum bits
in future quantum networks. While both single-photon emission and the strong
coupling regime have been demonstrated, further progress has been hampered by
the inability to control the coherent evolution of the c-QED system in real
time, as needed to produce and harness charge-photon entanglement. Here, using
the ultrafast electrical tuning of the exciton energy in a photonic crystal
(PhC) diode, we demonstrate the dynamic control of the coupling of a single
exciton to a PhC cavity mode on a sub-ns timescale, faster than the natural
lifetime of the exciton, for the first time. This opens the way to the control
of single-photon waveforms, as needed for quantum interfaces, and to the
real-time control of solid-state c-QED systems.Comment: 8 pages, 4 figure
High-Frequency and Below Bandgap Anisotropic Dielectric Constants in \u3cem\u3eα\u3c/em\u3e-(Al\u3csub\u3ex\u3c/sub\u3eGa\u3csub\u3e1-x\u3c/sub\u3e)\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e (0â€xâ€1)
A Mueller matrix spectroscopic ellipsometry approach was used to investigate the anisotropic dielectric constants of corundum α-(AlxGa1-x)2O3 thin films in their below bandgap spectral regions. The sample set was epitaxially grown using plasma-assisted molecular beam epitaxy on m-plane sapphire. The spectroscopic ellipsometry measurements were performed at multiple azimuthal angles to resolve the uniaxial dielectric properties. A Cauchy dispersion model was applied, and high-frequency dielectric constants are determined for polarization perpendicular (Δâ,â) and parallel (Δâ,â„) to the thin film c-axis. The optical birefringence is negative throughout the composition range, and the overall index of refraction substantially decreases upon incorporation of Al. We find small bowing parameters of the high-frequency dielectric constants with bâ=0.386 and bâ„=0.307
Anisotropic Dielectric Functions, Band-to-Band Transitions, and Critical Points in \u3cem\u3eα\u3c/em\u3e-Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e
We use a combined generalized spectroscopic ellipsometry and density functional theory approach to determine and analyze the anisotropic dielectric functions of an α-Ga2O3 thin film. The sample is grown epitaxially by plasma-assisted molecular beam epitaxy on m-plane sapphire. Generalized spectroscopic ellipsometry data from multiple sample azimuths in the spectral range from 0.73 eV to 8.75 eV are simultaneously analyzed. Density functional theory is used to calculate the valence and conduction band structure. We identify, for the indirect-bandgap material, two direct band-to-band transitions with M0-type van Hove singularities for polarization perpendicular to the c axis, E0,â„=5.46(6) eV and E0,â„=6.04(1) eV, and one direct band-to-band transition with M1-type van Hove singularity for polarization parallel to E0,â„=5.44(2) eV. We further identify excitonic contributions with a small binding energy of 7 meV associated with the lowest ordinary transition and a hyperbolic exciton at the M1-type critical point with a large binding energy of 178 meV
- âŠ