577 research outputs found

    Polarization Aberrations

    Get PDF
    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs

    Subunit structure of testicular hyaluronidase

    Get PDF

    Polarization Aberration in Astronomical Telescopes

    Get PDF
    The point spread function (PSF) for astronomical telescopes and instruments depends not only on geometric aberrations and scalar wave diffraction, but also on the apodization and wavefront errors introduced by coatings on reflecting and transmitting surfaces within the optical system. The functional form of these aberrations, called polarization aberrations, result from the angles of incidence and the variations of the coatings as a function of angle. These coatings induce small modifications to the PSF, which consists of four separate components, two nearly Airy-disk PSF components, and two faint components, we call ghost PSF components, with a spatial extent about twice the size of the diffraction limited image. As the specifications of optical systems constantly improve, these small effects become increasingly important. It is shown how the magnitude of these ghost PSF components, at ~10^(-5) in the example telescope, can interfere with exoplanet detection with coronagraphs

    Polarization Aberrations in Astronomical Telescopes: The Point Spread Function

    Get PDF
    Detailed knowledge of the image of the point spread function (PSF) is necessary to optimize astronomical coronagraph masks and to understand potential sources of errors in astrometric measurements. The PSF for astronomical telescopes and instruments depends not only on geometric aberrations and scalar wave diffraction but also on those wavefront errors introduced by the physical optics and the polarization properties of reflecting and transmitting surfaces within the optical system. These vector wave aberrations, called polarization aberrations, result from two sources: (1) the mirror coatings necessary to make the highly reflecting mirror surfaces, and (2) the optical prescription with its inevitable non-normal incidence of rays on reflecting surfaces. The purpose of this article is to characterize the importance of polarization aberrations, to describe the analytical tools to calculate the PSF image, and to provide the background to understand how astronomical image data may be affected. To show the order of magnitude of the effects of polarization aberrations on astronomical images, a generic astronomical telescope configuration is analyzed here by modeling a fast Cassegrain telescope followed by a single 90° deviation fold mirror. All mirrors in this example use bare aluminum reflective coatings and the illumination wavelength is 800 nm. Our findings for this example telescope are: (1) The image plane irradiance distribution is the linear superposition of four PSF images: one for each of the two orthogonal polarizations and one for each of two cross-coupled polarization terms. (2) The PSF image is brighter by 9% for one polarization component compared to its orthogonal state. (3) The PSF images for two orthogonal linearly polarization components are shifted with respect to each other, causing the PSF image for unpolarized point sources to become slightly elongated (elliptical) with a centroid separation of about 0.6 mas. This is important for both astrometry and coronagraph applications. (4) Part of the aberration is a polarization-dependent astigmatism, with a magnitude of 22 milliwaves, which enlarges the PSF image. (5) The orthogonally polarized components of unpolarized sources contain different wavefront aberrations, which differ by approximately 32 milliwaves. This implies that a wavefront correction system cannot optimally correct the aberrations for all polarizations simultaneously. (6) The polarization aberrations couple small parts of each polarization component of the light (∼10^(-4)) into the orthogonal polarization where these components cause highly distorted secondary, or “ghost” PSF images. (7) The radius of the spatial extent of the 90% encircled energy of these two ghost PSF image is twice as large as the radius of the Airy diffraction pattern. Coronagraphs for terrestrial exoplanet science are expected to image objects 10^(-10), or 6 orders of magnitude less than the intensity of the instrument-induced “ghost” PSF image, which will interfere with exoplanet measurements. A polarization aberration expansion which approximates the Jones pupil of the example telescope in six polarization terms is presented in the appendix. Individual terms can be associated with particular polarization defects. The dependence of these terms on angles of incidence, numerical aperture, and the Taylor series representation of the Fresnel equations lead to algebraic relations between these parameters and the scaling of the polarization aberrations. These “design rules” applicable to the example telescope are collected in § 5. Currently, exoplanet coronagraph masks are designed and optimized for scalar diffraction in optical systems. Radiation from the “ghost” PSF image leaks around currently designed image plane masks. Here, we show a vector-wave or polarization optimization is recommended. These effects follow from a natural description of the optical system in terms of the Jones matrices associated with each ray path of interest. The importance of these effects varies by orders of magnitude between different optical systems, depending on the optical design and coatings selected. Some of these effects can be calibrated while others are more problematic. Polarization aberration mitigation methods and technologies to minimize these effects are discussed. These effects have important implications for high-contrast imaging, coronagraphy, and astrometry with their stringent PSF image symmetry and scattered light requirements

    Optical properties monitor: Experiment definition phase

    Get PDF
    The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination

    HabEx polarization ray trace and aberration analysis

    Get PDF
    The flux difference between a terrestrial exoplanet and a much brighter nearby star creates an enormous optical design challenge for space-based imaging systems. Coronagraphs are designed to block the star’s flux and obtain a high-dynamic-range image of the exoplanet. The contrast of an optical system is calculated using the point spread function (PSF). Contrast quantifies starlight suppression of an imaging system at a given separation of the two objects. Contrast requirements can be as small as 10^(−10) for earth-like planets. This work reports an analysis of the September 2017 Habitable Exoplanet Imaging Mission (HabEx) end-to-end optical system prescription for geometric and polarization aberrations across the 450 to 550 nm channel. The Lyot coronagraph was modeled with a vector vortex charge 6 mask but without adaptive optics (AO) to correct the phase of the Jones pupil. The detector plane irradiance was calculated for three states of the telescope/coronagraph system: (1) free of geometric and polarization aberrations; (2) isotropic mirror coatings throughout the end-toend system; and (3) isotropic mirrors with form birefringence on the primary mirror. For each of these three states the system response both with and without a coronagraph mask was calculated. Two merit functions were defined to quantify the system’s ability to attenuate starlight: (1) normalized polychromatic irradiance (NPI), and (2) starlight suppression factor (SSF). Both of these are dimensionless and their values are functions of position across the focal plane. The NPI is defined as the irradiance point-by-point across the detector plane with a coronagraph mask divided by the value of the on-axis irradiance without a coronagraph mask. The SSF is the irradiance point-by-point across the detector plane with a coronagraph mask divided by the pointby-point value of the irradiance across the detector plane without a coronagraph mask. Both the NPI and the SSF provide insights into coronagraph performance. Deviations from the aberration-free case are calculated and summarized in table 2. The conclusions are: (1) the HabEx optical system is well-balanced for both geometric and polarization aberrations; (2) the spatially dependent polarization reflectivity for the HabEx primary mirror should be specified to ensure the coating is isotropic; (3) AO to correct the two orthogonal polarization-dependent wavefront errors is essential

    Ecological and physiological studies of the effect of sulfate pulp mill wastes on oysters in the York River, Virginia

    Get PDF
    This study of the York River and issues impacting the oyster fishery provides historical information on the river\u27s physical and chemical conditions (temperature, salinity, dissolved oxygen, turbidity, currents, etc.) effluent observations, history and data of the oyster fishery, oyster condition, biological and pathological work and experimental studies. The project studies were responsible for the establishment of a fisheries laboratory in Yorktown, Va. p. 59 - Funds for the York River investigations were made available in 1935 by a special allotment from the Public Works Administration. Continuation of the project was made possible by regular allotments by the Bureau of Fisheries and appropriations from the Commonwealth of Virginia through its Commission of Fisheries. In October 1935 a laboratory was established at Yorktown, Va., where a satisfactory supply of sea water was available for physiological studies\u27 on oysters. A boat suitable for the field observations was supplied by the Virginia Commission of Fisheries. Studies of the chemical nature of the pulp-mill effluents were carried on from July 1938 to July 1940 at laboratories made available by the College of William and Mary

    Spatial ecology of translocated raccoons

    Get PDF
    Raccoons (Procyon lotor) are routinely translocated both legally and illegally to mitigate conflicts with humans, which has contributed to the spread of rabies virus across eastern North America. The movement behavior of translocated raccoons has important ramifications for disease transmission yet remains understudied and poorly quantified. To examine the spatial ecology of raccoons following experimental translocation, we performed reciprocal 16 km-distance translocations of 30 raccoons between habitats of high and low raccoon density (bottomland hardwood and upland pine, respectively) across the Savannah River Site (SRS) in Aiken, South Carolina, USA (2018–2019). Translocation influenced patterns of raccoon space use, with translocated animals exhibiting a 13-fold increase in 95% utilization distributions (UDs) post- compared to pre-translocation (mean 95% UD 35.8 ± 36.1 km2 vs 1.96 ± 1.17 km2). Raccoons originating from upland pine habitats consistently had greater space use and larger nightly movement distances post-translocation compared to raccoons moved from bottomland hardwood habitats, whereas these differences were generally not observed prior to translocation. Estimated home ranges of male raccoons were twice the area as estimated for female raccoons, on average, and this pattern was not affected by translocation. After a transient period lasting on average 36.5 days (SD = 30.0, range = 3.25–92.8), raccoons often resumed preexperiment movement behavior, with 95% UD sizes not different from those prior to translocation (mean = 2.27 ± 1.63km2). Most animals established new home ranges after translocation, whereas three raccoons moved \u3e 16 km from their release point back to the original capture location. Four animals crossed a 100-m wide river within the SRS post-translocation, but this behavior was not documented among collared raccoons prior to translocation. Large increases in space use combined with the crossing of geographic barriers such as rivers may lead to elevated contact rates with conspecifics, which can heighten disease transmission risks following translocation. These results provide additional insights regarding the potential impacts of raccoon translocation towards population level risks of rabies outbreaks and underscore the need to discourage mesocarnivore translocations to prevent further spread of wildlife rabies
    corecore