15 research outputs found

    Iron induces two distinct Ca<sup>2+</sup> signalling cascades in astrocytes.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-05-01, epub 2021-05-05Publication status: PublishedFunder: National Natural Science Foundation of China (National Science Foundation of China); Grant(s): 81871852Iron is the fundamental element for numerous physiological functions. Plasmalemmal divalent metal ion transporter 1 (DMT1) is responsible for cellular uptake of ferrous (Fe2+), whereas transferrin receptors (TFR) carry transferrin (TF)-bound ferric (Fe3+). In this study we performed detailed analysis of the action of Fe ions on cytoplasmic free calcium ion concentration ([Ca2+]i) in astrocytes. Administration of Fe2+ or Fe3+ in μM concentrations evoked [Ca2+]i in astrocytes in vitro and in vivo. Iron ions trigger increase in [Ca2+]i through two distinct molecular cascades. Uptake of Fe2+ by DMT1 inhibits astroglial Na+-K+-ATPase, which leads to elevation in cytoplasmic Na+ concentration, thus reversing Na+/Ca2+ exchanger and thereby generating Ca2+ influx. Uptake of Fe3+ by TF-TFR stimulates phospholipase C to produce inositol 1,4,5-trisphosphate (InsP3), thus triggering InsP3 receptor-mediated Ca2+ release from endoplasmic reticulum. In summary, these findings reveal the mechanisms of iron-induced astrocytic signalling operational in conditions of iron overload

    Comparative Analysis and Phylogenetic Insights of Cas14-Homology Proteins in Bacteria and Archaea

    No full text
    Type-V-F Cas12f proteins, also known as Cas14, have drawn significant interest within the diverse CRISPR-Cas nucleases due to their compact size. This study involves analyzing and comparing Cas14-homology proteins in prokaryotic genomes through mining, sequence comparisons, a phylogenetic analysis, and an array/repeat analysis. In our analysis, we identified and mined a total of 93 Cas14-homology proteins that ranged in size from 344 aa to 843 aa. The majority of the Cas14-homology proteins discovered in this analysis were found within the Firmicutes group, which contained 37 species, representing 42% of all the Cas14-homology proteins identified. In archaea, the DPANN group had the highest number of species containing Cas14-homology proteins, a total of three species. The phylogenetic analysis results demonstrate the division of Cas14-homology proteins into three clades: Cas14-A, Cas14-B, and Cas14-U. Extensive similarity was observed at the C-terminal end (CTD) through a domain comparison of the three clades, suggesting a potentially shared mechanism of action due to the presence of cutting domains in that region. Additionally, a sequence similarity analysis of all the identified Cas14 sequences indicated a low level of similarity (18%) between the protein variants. The analysis of repeats/arrays in the extended nucleotide sequences of the identified Cas14-homology proteins highlighted that 44 out of the total mined proteins possessed CRISPR-associated repeats, with 20 of them being specific to Cas14. Our study contributes to the increased understanding of Cas14 proteins across prokaryotic genomes. These homologous proteins have the potential for future applications in the mining and engineering of Cas14 proteins

    Apoptotic mechanism of propofol-induced developmental toxicity in zebrafish embryos.

    No full text
    General anesthetics can cause neurological damage and long-term behavioral/cognitive impairment during fetal and early postnatal life. However, the adverse influence on embryo development induced by propofol is unclear. We used embryonic zebrafish to explore the effects of propofol on embryonic and larval growth and development, and the related apoptotic mechanism. Zebrafish embryos were immersed in propofol (1, 2, 3, 4, and 5 μg/ml) dissolved in E3 medium from 6 to 48 hours post fertilization (hpf). The survival rate, locomotion, heart rate, hatchability, deformity rate, and body length were analyzed at defined stages. Terminal deoxynucleotidyl transferase nick-end-labeling was used to detect zebrafish embryo apoptosis, and the expression levels of apoptosis-related genes were determined using quantitative real-time reverse transcription PCR and whole-mount in situ hybridization. Larvae at 48 hpf were anesthetized by immersion in E3 culture medium containing 2 μg/ml propofol, the reasonable anesthetic concentration for zebrafish embryos, which caused significant caudal fin dysplasia, light pigmentation, edema, hemorrhage, and spinal deformity, and decreased the hatchability, body length, and heart rate. The numbers of apoptotic cells in propofol-treated 12, 48 and 72 hpf embryos increased significantly, and the mRNA expression levels of intrinsic apoptosis pathway-related casp3a, casp3b, casp9, and baxb genes were upregulated, mainly in the head and tail. Propofol decreased apoptosis in the head and back of 24 hpf zebrafish, which was consistent with the mRNA expression analysis. Our findings demonstrated that zebrafish embryos and larvae exposed to propofol experienced developmental toxicity, which correlated with the intrinsic apoptosis pathway with casp3a, casp3b, casp9, and baxb as the key genes

    Phylogenetic Relationships among TnpB-Containing Mobile Elements in Six Bacterial Species

    No full text
    Some families of mobile elements in bacterial genomes encode not only a transposase but also an accessory TnpB gene. This gene has been shown to encode an RNA-guided DNA endonuclease, co-evolving with Y1 transposase and serine recombinase in mobile elements IS605 and IS607. In this paper, we reveal the evolutionary relationships among TnpB-containing mobile elements (TCMEs) in well-assembled genomes of six bacterial species: Bacillus cereus, Clostridioides difficile, Deinococcus radiodurans, Escherichia coli, Helicobacter pylori and Salmonella enterica. In total, 9996 TCMEs were identified in 4594 genomes. They belonged to 39 different insertion sequences (ISs). Based on their genetic structures and sequence identities, the 39 TCMEs were classified into three main groups and six subgroups. According to our phylogenetic analysis, TnpBs include two main branches (TnpB-A and TnpB-B) and two minor branches (TnpB-C and TnpB-D). The key TnpB motifs and the associated Y1 and serine recombinases were highly conserved across species, even though their overall sequence identities were low. Substantial variation was observed for the rate of invasion across bacterial species and strains. Over 80% of the genomes of B. cereus, C. difficile, D. radiodurans and E. coli contained TCMEs; however, only 64% of the genomes of H. pylori and 44% of S. enterica genomes contained TCMEs. IS605 showed the largest rate of invasion in these species, while IS607 and IS1341 had a relatively narrow distribution. Co-invasions of IS605, IS607 and IS1341 elements were observed in various genomes. The largest average copy number was observed for IS605b elements in C. difficile. The average copy numbers of most other TCMEs were smaller than four. Our findings have important implications for understanding the co-evolution of TnpB-containing mobile elements and their biological roles in host genome evolution

    Sleep Deprivation Selectively Down-Regulates Astrocytic 5-HT<sub>2B</sub> Receptors and Triggers Depressive-Like Behaviors via Stimulating P2X<sub>7</sub> Receptors in Mice

    No full text
    Chronic loss of sleep damages health and disturbs the quality of life. Long-lasting sleep deprivation (SD) as well as sleep abnormalities are substantial risk factors for major depressive disorder, although the underlying mechanisms are not clear. Here, we showed that chronic SD in mice promotes a gradual elevation of extracellular ATP, which activates astroglial P2X7 receptors (P2X7Rs). Activated P2X7Rs, in turn, selectively down-regulated the expression of 5-HT2B receptors (5-HT2BRs) in astrocytes. Stimulation of P2X7Rs induced by SD selectively suppressed the phosphorylation of AKT and FoxO3a in astrocytes, but not in neurons. The over-expression of FoxO3a in astrocytes inhibited the expression of 5-HT2BRs. Down-regulation of 5-HT2BsRs instigated by SD suppressed the activation of STAT3 and relieved the inhibition of Ca2+-dependent phospholipase A2. This latter cascade promoted the release of arachidonic acid and prostaglandin E2. The depression-like behaviors induced by SD were alleviated in P2X7R-KO mice. Our study reveals the mechanism underlying chronic SD-induced depression-like behaviors and suggests 5-HT2BRs as a key target for exploring therapeutic strategies aimed at the depression evoked by sleep disorders.</p

    A native, highly active Tc1/mariner transposon from zebrafish (ZB) offers an efficient genetic manipulation tool for vertebrates

    No full text
    New genetic tools and strategies are currently under development to facilitate functional genomics analyses. Here, we describe an active member of the Tc1/mariner transposon superfamily, named ZB, which invaded the zebrafish genome very recently. ZB exhibits high activity in vertebrate cells, in the range of those of the widely used transposons piggyBac (PB), Sleeping Beauty (SB) and Tol2. ZB has a similar structural organization and target site sequence preference to SB, but a different integration profile with respect to genome-wide preference among mammalian functional annotation features. Namely, ZB displays a preference for integration into transcriptional regulatory regions of genes. Accordingly, we demonstrate the utility of ZB for enhancer trapping in zebrafish embryos and in the mouse germline. These results indicate that ZB may be a powerful tool for genetic manipulation in vertebrate model species

    Iron induces two distinct Ca

    Get PDF
    From PubMed via Jisc Publications RouterHistory: received 2020-09-18, accepted 2021-03-30Publication status: epublishFunder: National Natural Science Foundation of China (National Science Foundation of China); Grant(s): 81871852Iron is the fundamental element for numerous physiological functions. Plasmalemmal divalent metal ion transporter 1 (DMT1) is responsible for cellular uptake of ferrous (Fe ), whereas transferrin receptors (TFR) carry transferrin (TF)-bound ferric (Fe ). In this study we performed detailed analysis of the action of Fe ions on cytoplasmic free calcium ion concentration ([Ca ] ) in astrocytes. Administration of Fe or Fe in μM concentrations evoked [Ca ] in astrocytes in vitro and in vivo. Iron ions trigger increase in [Ca ] through two distinct molecular cascades. Uptake of Fe by DMT1 inhibits astroglial Na -K -ATPase, which leads to elevation in cytoplasmic Na concentration, thus reversing Na /Ca exchanger and thereby generating Ca influx. Uptake of Fe by TF-TFR stimulates phospholipase C to produce inositol 1,4,5-trisphosphate (InsP ), thus triggering InsP receptor-mediated Ca release from endoplasmic reticulum. In summary, these findings reveal the mechanisms of iron-induced astrocytic signalling operational in conditions of iron overload
    corecore