794 research outputs found
Model Identification and Control Design for a Humanoid Robot
In this paper, model identification and adaptive control design are performed on Devanit-Hartenberg model of a humanoid robot. We focus on the modeling of the 6 degree-of-freedom upper limb of the robot using recursive Newton-Euler (RNE) formula for the coordinate frame of each joint. To obtain sufficient excitation for modeling of the robot, the particle swarm optimization method has been employed to optimize the trajectory of each joint, such that satisfied parameter estimation can be obtained. In addition, the estimated inertia parameters are taken as the initial values for the RNE-based adaptive control design to achieve improved tracking performance. Simulation studies have been carried out to verify the result of the identification algorithm and to illustrate the effectiveness of the control design
Improving Video Segmentation by Fusing Depth Cues and the Visual Background Extractor (ViBe) Algorithm
Depth-sensing technology has led to broad applications of inexpensive depth cameras that can capture human motion and scenes in three-dimensional space. Background subtraction algorithms can be improved by fusing color and depth cues, thereby allowing many issues encountered in classical color segmentation to be solved. In this paper, we propose a new fusion method that combines depth and color information for foreground segmentation based on an advanced color-based algorithm. First, a background model and a depth model are developed. Then, based on these models, we propose a new updating strategy that can eliminate ghosting and black shadows almost completely. Extensive experiments have been performed to compare the proposed algorithm with other, conventional RGB-D (Red-Green-Blue and Depth) algorithms. The experimental results suggest that our method extracts foregrounds with higher effectiveness and efficiency
Brain–Machine Interface and Visual Compressive Sensing-Based Teleoperation Control of an Exoskeleton Robot
This paper presents a teleoperation control for an exoskeleton robotic system based on the brain-machine interface and vision feedback. Vision compressive sensing, brain-machine reference commands, and adaptive fuzzy controllers in joint-space have been effectively integrated to enable the robot performing manipulation tasks guided by human operator's mind. First, a visual-feedback link is implemented by a video captured by a camera, allowing him/her to visualize the manipulator's workspace and movements being executed. Then, the compressed images are used as feedback errors in a nonvector space for producing steady-state visual evoked potentials electroencephalography (EEG) signals, and it requires no prior information on features in contrast to the traditional visual servoing. The proposed EEG decoding algorithm generates control signals for the exoskeleton robot using features extracted from neural activity. Considering coupled dynamics and actuator input constraints during the robot manipulation, a local adaptive fuzzy controller has been designed to drive the exoskeleton tracking the intended trajectories in human operator's mind and to provide a convenient way of dynamics compensation with minimal knowledge of the dynamics parameters of the exoskeleton robot. Extensive experiment studies employing three subjects have been performed to verify the validity of the proposed method
Decentralised adaptive control of a class of hidden leader–follower non-linearly parameterised coupled MASs
In this study, decentralised adaptive control is investigated for a class of discrete-time non-linear hidden leader–follower multi-agent systems (MASs). Different from the conventional leader–follower MAS, among all the agents, there exists a hidden leader that knows the desired reference trajectory, while the follower agents know neither the desired reference signal nor which is a leader agent. Each agent is affected from the history information of its own neighbours. The dynamics of each agent is described by the non-linear discrete-time auto-regressive model with unknown parameters. In order to deal with the uncertainties and non-linearity, a projection algorithm is applied to estimate the unknown parameters. Based on the certainty equivalence principle in adaptive control theory, the control for the hidden leader agent is designed by the desired reference signal, and the local control for each follower agent is designed using neighbourhood history information. Under the decentralised adaptive control, rigorous mathematical proofs are provided to show that the hidden leader agent tracks the desired reference signal, all the follower agents follow the hidden leader agent, and the closed-loop system eventually achieves strong synchronisation in the presence of strong couplings. In the end, the simulation results show the validity of this scheme
Neural Control of Bimanual Robots With Guaranteed Global Stability and Motion Precision
Robots with coordinated dual arms are able to perform more complicated tasks that a single manipulator could hardly achieve. However, more rigorous motion precision is required to guarantee effective cooperation between the dual arms, especially when they grasp a common object. In this case, the internal forces applied on the object must also be considered in addition to the external forces. Therefore, a prescribed tracking performance at both transient and steady states is first specified, and then, a controller is synthesized to rigorously guarantee the specified motion performance. In the presence of unknown dynamics of both the robot arms and the manipulated object, the neural network approximation technique is employed to compensate for uncertainties. In order to extend the semiglobal stability achieved by conventional neural control to global stability, a switching mechanism is integrated into the control design. Effectiveness of the proposed control design has been shown through experiments carried out on the Baxter Robot
Robust Stabilization of a Wheeled Mobile Robot Using Model Predictive Control Based on Neurodynamics Optimization
In this paper, a robust model predictive control (MPC) scheme using neural network based optimization has been developed to stabilize a physically constrained mobile robot. By applying a state scaling transformation, the intrinsic controllability of a mobile robots can be regained by incorporation into the control input with an additional exponential decaying term. An MPC based control method is then designed for the robot in the presence of external disturbances. The MPC optimization has been formulated as a convex nonlinear minimization problem and a primal-dual neural network (PDNN) is adopted to solve this optimization problem over a finite receding horizon. The computational efficiency of MPC has been significantly improved by the proposed neuro-dynamic approach. Experimental studies under various dynamic conditions have been performed to demonstrate the performance of the proposed approach, which can be applied for a large range of wheeled mobile robots
Multi-Channel Features Spatio-Temporal Context Learning for Visual Tracking
Visual tracking is a challenging issue in surveillance, human-computer interaction and intelligent robotics, among others. Managing appearance changes of the target object, illumination changes, rotations, non-rigid deformations, partial or full occlusions, background clutter, fast motion, and so forth is generally difficult. Among the numerous existing trackers, the correlationfilter- based tracker can achieve appealing performance with a fast speed for fast Fourier transform (FFT). Motivated by this property, the spatio-temporal context (STC) learning algorithm was proposed with consideration of the information from the context around the target, and this algorithm achieved good results. However, STC only utilizes the overall intensity information. In this paper, we propose a multi-channel features spatio-temporal context (MFSTC) learning algorithm with an improved scaleadaptive scheme. Our algorithm integrates powerful features, including Histogram of Oriented Gradients (HoG) and color naming, using kernel methods on the basis of the STC algorithm to further enhance the overall tracking performance. Extensive experimental results obtained from various benchmark datasets demonstrate that the proposed tracker is promising for various challenging scenarios and maintains real-time performance at an average speed of 78 fps. According to the test results, our algorithm outperforms the STC algorithm and achieves performance that is competitive with the state-of-the-art algorithms
Motion Planning for Omnidirectional Wheeled Mobile Robot by Potential Field Method
In this paper, potential field method has been used to navigate a three omnidirectional wheels’ mobile robot and to avoid obstacles. The potential field method is used to overcome the local minima problem and the goals nonreachable with obstacles nearby (GNRON) problem. For further consideration, model predictive control (MPC) has been used to incorporate motion constraints and make the velocity more realistic and flexible. The proposed method is employed based on the kinematic model and dynamics model of the mobile robot in this paper. To show the performance of proposed control scheme, simulation studies have been carried to perform the motion process of mobile robot in specific workplace
- …