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Abstract: Depth-sensing technology has led to broad applications of inexpensive depth cameras
that can capture human motion and scenes in three-dimensional space. Background subtraction
algorithms can be improved by fusing color and depth cues, thereby allowing many issues
encountered in classical color segmentation to be solved. In this paper, we propose a new fusion
method that combines depth and color information for foreground segmentation based on an
advanced color-based algorithm. First, a background model and a depth model are developed. Then,
based on these models, we propose a new updating strategy that can eliminate ghosting and black
shadows almost completely. Extensive experiments have been performed to compare the proposed
algorithm with other, conventional RGB-D (Red-Green-Blue and Depth) algorithms. The experimental
results suggest that our method extracts foregrounds with higher effectiveness and efficiency.

Keywords: object detection; background subtraction; video surveillance; Kinect sensor fusion

1. Introduction

In recent years, enormous amounts of data on human or animal behavior have been collected
using 2D and 3D cameras, and automated methods for detecting and tracking individuals or animals
have begun to play an important role in studies of experimental biology, behavioral science, and related
disciplines. Tracking target is prone to being lost due to managing appearance changes, fast motion,
and other factors. This results in the problem of detecting the tracking target again. Traditional
detection methods (such as the detector in TLD (Tracking-Learning-Detection) [1]) treat every frame
independently and perform full scanning of an input frame to localize all appearances that have been
observed and learned in the past. It is inefficient and time consuming, especially for real-time tracking.
However, foreground segmentation requires a detector to scan only the foreground region of an input
frame using a scanning window, which greatly reduces the scanning time of the detector and also
improves the classification accuracy. At present, a variety of foreground extraction methods have
been proposed, such as the frame difference method [2], the background subtraction method [3], the
optical flow method [4] and the block matching method [5]. The core of a background subtraction
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algorithm is the modeling of the background. Zones that show notable differences between the current
frame and the background model are deemed to correspond to moving objects. Generally, background
subtraction algorithms include the Average Background Model (AVG) algorithm, the Gaussian Mixture
Model (GMM) algorithm [6], the Codebook algorithm [7] and the Visual Background Extractor (ViBe)
algorithm [8–10]. The ViBe algorithm is a fast motion detection algorithm proposed by Olivier Barnich
et al. [8]. It is characterized by a high processing efficiency and a good detection effect.

Most of the conventional methods mentioned above were designed for application to color
images. However, depth is another interesting cue for segmentation that is less strongly affected by
the adverse effects encountered in classical color segmentation, such as shadow and highlight regions.
Depth cameras, such as the Microsoft Kinect and the ASUS Xtion Pro (ASUS, Taiwan), are able to record
real-time depth video together with color video. Because of their beneficial depth imaging features
and moderate price, such depth cameras are broadly applied in intelligent surveillance, medical
diagnostics, and human–computer interaction applications [11–13]. The Kinect sensor is not sensitive
to light conditions; it works well either in a bright room or in a pitch black one. This makes depth
images more reliable and easier for a computer program to understand.

Most studies using the Kinect sensor have focused on human body detection and tracking [14–16].
The Histogram of Oriented Depths (HOD) detection algorithm, proposed in [14], can be used to match
human body contour information in an image. In [15], a model was presented for detecting humans
using a 2D head contour model and a 3D head surface model. In these studies, the computational
complexity of the feature generation and matching process was relatively high.

Crabb et al. [17] and Schiller et al. [18] focused on combining the depth and color information
obtained by low-resolution ToF (Time of Flight) cameras, but their methods are not well suited
for video surveillance. For example, the method of Crabb et al. [17] requires the definition
of a distance plane where no foreground object is located behind any part of the background.
Fernandez-Sanchez et al. [19] proposed an adaptation of the Codebook background subtraction
algorithm that focuses on different sensor channels. In [20], the method presented combines a mixture
of Gaussian-based background subtraction algorithms with a new Bayesian network. The Bayesian
network exploits the characteristics of the depth data using two dynamic models that estimate the
spatial and depth evolution of the foreground/background regions. Camplani et al. [21] proposed a
foreground/background segmentation method that combines two statistical classifiers using color and
depth features. The combination of depth and color cues makes it possible to solve color segmentation
issues such as shadows, reflections and camouflage. However, the computations required are too
complicated. The fundamental idea of the combination strategy in [22] is that when depth measurement
is reliable, the background subtraction from depth takes top priority. Otherwise, RGB (Red-Green-Blue)
is used as an alternative. Noise is removed from the depth data using a noise model. They define the
background as the stationary part of a scene. The Gaussian mixture model is observed for each pixel
over a sequence of frames. These existing RGB-D (RGB and Depth) segmentation algorithms either
suffer from ghosts, such as Depth-Extended Codebook ( DECB) [19] and 4D version of Mixture of
Gaussians (MOG4D) [18], or fail to achieve real-time performance [21]. A ghost is a set of interconnected
points that is detected as a moving object but does not correspond to any real object (see Figure 1c).
Ghosting greatly reduces the effectiveness of motion detection.
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Figure 1. Ghosting in a foreground segmentation map generated by the Visual Background Extractor
(ViBe) algorithm [8]: (a) color frame; (b) ground truth; (c) foreground extraction result.

In this paper, we propose an adaptive ViBe background subtraction algorithm that fuses
the depth and color information obtained by the Kinect sensor to segment foreground regions.
First, a background model and a depth model are established. Then, based on these models, we develop
a new updating strategy that can efficiently eliminate ghosting and black shadows. The improved
algorithm is evaluated using an RGB-D benchmark dataset [23] in addition to our own test RGB-D
video and achieves good results that provide a perfect basis for subsequent feature extraction and
behavior recognition.

The remainder of the paper is organized as follows. In Section 2, we briefly describe the original
ViBe algorithm. Then, the improved algorithm is developed in Section 3. In Section 4, experimental
results and discussions are presented. Finally, we conclude the paper in Section 5.

2. ViBe Background Subtraction Algorithm

In this section, we first review the basic ViBe algorithm. Then, we identify its disadvantages.
This technique involves modeling the background based on a set of samples for each pixel. New frames
are compared with the background model, pixel by pixel, to determine whether each pixel belongs to
the background or the foreground.

2.1. Pixel Model

Background model construction begins from the first frame. Formally, let v(x) denote the value
in a given Euclidean color space associated with the pixel located at x in the image, and let vi be the
background sample value with index i. Each background pixel x is modeled based on a collection of N
background sample values M(x) = {v1, v2, · · · , vN}.

2.2. Classification Process

If the Euclidean distance from a sample vi in M(x) to v(x) is below a threshold R, then vi
is regarded as a neighbor of v(x). We define the number of neighbors of the pixel located at x as
NR(x) = {‖v(x)− vi‖ < R, ∀vi ∈ M(x)}. When NR(x) is greater than a threshold λ, x is a background
pixel. Otherwise, it is a foreground pixel.

2.3. Updating the Background Model over Time

It is necessary to continuously update the background model with each new frame. This is
a crucial step for achieving accurate results over time. When a pixel x is classified as background,
the background model updating strategy is triggered. A sample is chosen randomly. Mathematically,
the probability that a sample present in the model at time t will be preserved is given by (N − 1)/N.
Under the assumption of time continuity, for any later time t + dt, this probability is equal to:

P(t, t + dt) = (
N − 1

N
)(t+dt)−t (1)
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which can be rewritten as:
P(t, t + dt) = e−ln( N

N−1 )
dt

(2)

This expression shows that the expected remaining lifespan of any sample value in the model
decays exponentially according to a random subsampling strategy. As in [8], we adopt a time
subsampling factor of φ, meaning that a background pixel value has one chance in φ of being selected
to update its pixel model.

Reduced pseudo-code for the ViBe construction phase is given in Algorithm 1.
The classical ViBe algorithm has the advantages of simple processing and outstanding performance.

Its main drawback is the occurrence of ghosting. A moving object in the first frame often causes ghosting.
To resolve this problem, we can take advantage of depth information. The Kinect sensor records the
distance to any object that is placed in front of it. This feature can be utilized to determine whether
a foreground pixel is a ghost.

Algorithm 1 Algorithm for ViBe construction

1: procedure ViBe(image, N, R, λ, φ)
2: for each pixel do
3: while matches < λ and index < N do
4: Calculate Euclidean distance between vx and vi
5: if dist < R then
6: matches← matches + 1
7: end if
8: index ← index + 1
9: end while

10: if matches > λ then
11: Store that pixel ∈ background
12: Update current pixel background model with probability 1/φ

13: Update neighboring pixel background model with probability 1/φ

14: else
15: Store that pixel ∈ foreground
16: end if
17: end for
18: end procedure

3. Fusion: Depth-Extended ViBe (DEVB)

3.1. Depth Model

In general, the first frame in a video serves as the background. When the target appears in the
first frame, most of detection methods get difficult to dissociate the foreground from the background
quickly only by means of RGB images. However, it would become easy when exploiting depth cues.
For a depth image, a pixel is brighter and its distance to camera is closer. Accordingly, the pixel values
of a foreground are large, while those of a background are small. When a foreground shifts, the pixels
corresponding to its initial position naturally get small. If those pixels are still recognized as the
foreground, they would be a false foreground (a ghost).

To eliminate ghosting, the ViBe algorithm is improved by enhancing the matching conditions
when a pixel is classified as foreground. A depth model MD(x) is added. Initially, the pixel values of
the first depth frame are saved to MD(x). This depth model also has an updating strategy similar to
that for the background model. When the updating strategy is triggered, the depth value MD(x) is
replaced with that corresponding to the current pixel. If the following condition is satisfied, this pixel
will be considered a ghost pixel:

v(x, t0)− v(x, t) > τ (3)
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where v(x, t0) is the value of the pixel located at x in the depth model MD(x) at time t0, v(x, t) is the
value of the pixel located at x in the current depth image at time t. The threshold τ is an empirical
value, which can be tuned to obtain the best result. The value of τ is recommended to lie within the
range of [1, 3].

3.2. Fusion Algorithm for Color and Depth Images

A color image conforms to an individual’s visual habits and provides detailed information such as
color and texture. The most intuitive fusion strategy is to add the depth information as a fourth channel
to the ViBe algorithm for color images. The channel combination f = ( fr, fg, fb, d) is formed from
the three color channels in RGB space and the depth value d. In this way, we intend to utilize depth
information as a measure of reliability during segmentation. A depth image quantifies the distance
from an object to the camera. The higher the value of a pixel is, the more reliable its measurement is in
the depth image. Thus, we use the inverse of the depth image to allow it to be used in the same way as
a variance image.

The inverted depth values are normalized between zero and one, and the normalized uncertainty
is denoted by σ(x). In a region where the depth uncertainty is high, the depth measurement is
considered unreliable. For example, where there are holes in the depth image, the fusion result will
depend on the color image. We weight the normalized depth ˆd(x) with the uncertainty σ(x), resulting
in wd values that range between zero and one depending on σ(x). Meanwhile, the color value ˆc(x) is
multiplied by σ(x) and added to itself to obtain the weighted color value, defined as wc. The combined
normalized image is denoted by ˆI(x), as shown in Equation (4).

wd = (1− σ(x)) ˆd(x)

wc = (1 + σ(x)) ˆc(x)

ˆI(x) =
1
2
(wd + wc)

(4)

The original algorithm can eliminate ghosts and black shadows in subsequent frames, but the
process is relatively slow. We propose a fusion strategy that incorporates an additional depth model
to effectively remove ghosting and black shadows. Reduced pseudo-code for the DEVB construction
phase is given in Algorithm 2.
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Algorithm 2 Algorithm for DEVB construction

1: procedure DEVB(image f usion,imagedepth,N, R, λ, φ)
2: for each image f usion pixel do
3: while matches < λ and index < N do
4: Calculate Euclidean distance between vx and vi
5: if dist < R then
6: matches← matches + 1
7: end if
8: index ← index + 1
9: end while

10: if matches > λ then
11: Store current pixel ∈ background
12: Update current pixel background model in image f usion with probability 1/φ

13: Update neighboring pixel background model in image f usion with probability 1/φ

14: Update current pixel modeldepth using imagedepth
15: else
16: Store current pixel ∈ foreground
17: Find ghosts, calculate Euclidean distances between pixels at the same position in

imagedepth and modeldepth
18: if dist > τ then
19: Store that pixel ∈ background
20: Update current pixel background model in image f usion with probability 1/φ

21: Update neighboring pixel background model in image f usion with probability 1/φ

22: end if
23: end if
24: end for
25: end procedure

Section 4 presents experiments performed without post-processing and the results obtained
using three RGB-D algorithms (MOG4D [18], DECB [19] and DEVB) as well as the color-based ViBe
algorithm.

4. Experiments and Results

The program development environment consisted of VC++2010, OpenCV SDK2.4.3 and
OpenNI1.5.2.7. The PC was equipped with a Core Duo 2 CPU E7500 with 2.00 GB of RAM. The video
frame rate was 30 fps, and the size of both the color and depth images was 640× 480. We compared the
results of our method with those obtained using two state-of-the-art RGB-D fusion-based background
subtraction algorithms, namely, MOG4D [18] and DECB [19], as well as the ViBe algorithm on the color
images [8] (ViBe) and the ViBe based only on depth (ViBe1D). To evaluate these algorithms objectively
through a quantitative analysis, we required a benchmark that would provide information on both
color and depth images. The chosen benchmark sequences are publicly available at [23]. However, the
depth image sequences provided by this source could not be utilized directly. The depth images are in
the 16-bit png format, with the first three bits swapped with the last. We needed to swap them back
after reading each image to obtain values for each pixel corresponding to the distance from the Kinect
sensor to the object in mm. The sequences child_no1, new_ex_occ4, walking_occ1 and new_ex_no_occ
from [23] and our own pigeon were chosen for testing.

Many metrics can be used to assess the output of a background subtraction algorithm given
a series of ground truths for several frames in each sequence. Various relative metrics can be calculated
based on the numbers of true and false positives and negatives (TP, FP, TN, and FN). These metrics
are most widely used in computer vision to assess the performance of a binary classifier, as in [24].
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PWC is the percentage of wrong classifications in the entire image. This measure represents a trade-off
between the abilities of an algorithm to detect foreground and background pixels. In general, a lower
value of this estimator indicates better performance.

PWC =
FN + FP

TP + TN + FP + FN
× 100 (5)

The proposed approach relies on several parameters originating from the ViBe algorithm: N, R, λ,
and φ in [8]. Considering our aim of evaluating the overall performance of the algorithms, we chose
a unique set of parameters that yielded sufficiently good results on the complete dataset. According to
[8], and in our experience, the use of a radius R = 20 and a time subsampling factor φ = 16 leads to
excellent results in every situation. To determine optimal values for λ, we computed the evolution of
the PWC of DEVB on the new_ex_no_occ sequence for λ ranging from 1 to 20. The other parameters
were fixed to N = 20, R = 20, and φ = 16. Based on joint consideration of the value of λ in [8] and in
Figure 2, we set the optimal value of λ to λ = 2. As λ rises, the computational cost increases. Once
the value of 2 has been selected for λ, we study the influence of the parameter N on the performance
of DEVB. Figure 3 shows the percentages obtained using the new_ex_no_occ sequence for N ranging
from 2 to 50. We observe that higher values of N provide better performance. However, they tend to
saturate for values higher than 20. We select N at the beginning of the basin, that is, N = 20. To ensure
a fair comparison of the performances of the various algorithms, all algorithms were applied without
morphological filtering.

The first sequence, child_no1, shows a child and two adults playing in a living room. The main
difficulties in this sequence are light reflections and subjects that sometimes remain still or move
only slowly. Figure 4 shows the segmentations produced by the four methods as well as the original
color and depth frames and the hand-generated segmentations (ground truths). Ghosts appear in
some frames for MOG4D, DECB, ViBe and ViBe1D, greatly reducing the effectiveness of foreground
detection. The ViBe algorithm yields worse results than the other algorithms in frame 160 because
of the reflection in the color image. In general, the DEVB algorithm achieves improvement over
ViBe by virtue of the additional depth model, which allows the ghosts and black shadows to be
effectively removed.

0 5 10 15 20
3.6

3.7

3.8

3.9

4

4.1
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4.3

P
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Number of matches

Figure 2. Percentage of wrong classifications (PWCs) for λ ranging from 1 to 20. The other parameters
of depth-extended ViBe (DEVB) were set to N = 20, R = 20, and φ = 16.
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Figure 3. PWCs given the number of samples collected in a background model.

Table 1 shows the quantitative PWC results obtained by the four approaches on the evaluation
frames from the child_no1 sequence. All RGB-D approaches achieve improvements with respect to
ViBe, obtaining lower PWC values. A lower PWC value indicates better performance. The proposed
DEVB algorithm achieves the lowest average error rate of 7.023% in Table 1, which indicates that our
method performs better than the other algorithms.
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Figure 4. Comparison of background/foreground segmentation images generated by various
background subtraction techniques for four frames taken from the child_no1 sequence without
morphological filtering. The segmented images produced by our method are the closest to the
ground-truth references. MOG4D: 4D version of Mixture of Gaussians. DECB: Depth-Extended
Codebook. ViBe: visual background extractor. ViBe1D: ViBe based only on depth. DEVB:
Depth-Extended ViBe.

Table 1. Segmentation evaluation for the child_no1 sequence. The table shows the PWC results for the
various approaches on four different evaluation frames and the mean values for this sequence.

Approach Frame 22 Frame 46 Frame 70 Frame 160 Mean

DEVB 6.114 6.035 8.826 7.118 7.023
ViBe 7.808 8.932 7.879 16.455 10.269

ViBe1D 11.183 10.686 9.458 10.848 10.544
MOG4D 7.519 6.559 8.003 8.13 7.553

DECB 8.271 8.072 8.672 8.334 8.337

The second sequence, new_ex_occ4, shows two individuals walking in front of a coffee shop.
The main difficulties presented by this sequence are flickering lights and areas where depth information
cannot be obtained by the active infrared sensor. Figure 5 shows the segmentations produced by the
four approaches. Our DEVB algorithm achieves good results, whereas ghosting greatly reduces the
effectiveness of the other algorithms in foreground extraction.

Table 2 shows the quantitative PWC results obtained by the four approaches on the evaluation
frames from the new_ex_occ4 sequence. The proposed DEVB algorithm achieves the lowest PWC of
3.968, which indicates that our method performs better than the other algorithms. ViBe yields the
worst result of PWC = 12.872 on this sequence.
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Figure 5. Results obtained in the test sequence new_ex_occ4.

Table 2. Segmentation evaluation for the new_ex_occ4 sequence. The table shows the PWC results for
the various approaches on four different evaluation frames as well as the mean values for this sequence.

Approach Frame 15 Frame 24 Frame 36 Frame 42 Mean

DEVB 5.129 2.997 3.261 4.485 3.968
ViBe 12.294 12.394 12.684 14.116 12.872

ViBe1D 12.096 12.554 12.461 11.999 12.278
MOG4D 11.685 11.157 4.845 5.189 8.219

DECB 9.753 8.522 8.706 9.909 9.223

The third sequence, walking_occ1, shows a few people walking in and out of the camera field.
In addition, there are flickering lights on the ceiling and sudden illumination changes. Figure 6 shows
the segmentations produced by the four approaches. DECB and ViBe1D are less affected by the
sudden illumination changes. In addition to ghosting, ViBe1D results in black shadows in frames
35 and 62. The reason for the generation of black shadows is that a new moving object reaches the
previous position of an old target. Because the pixel values are similar, the foreground is misclassified
as background.

Table 3 shows the quantitative PWC results obtained by the four approaches on the evaluation
frames from the walking_occ1 sequence. The DEVB algorithm achieves PWC = 8.847 in frame 8,
whereas the PWC values obtained by the other algorithms are higher by more than a factor of three.
Moreover, despite being affected by illumination changes in the RGB space, DEVB achieves an average
PWC of 8.721 (Table 3), indicating that our method is fairly robust to difficult situations.

The fourth sequence, new_ex_no_occ, shows a lady walking in front of a coffee shop. The scenario
is similar to the new_ex_occ4 sequence discussed above. Figure 7 shows the segmentations produced
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by the four approaches. A large amount of noise is generated by the ViBe1D algorithm because of the
holes in the original depth image.

Figure 6. Results obtained in the test sequence walking_occ1.

Table 3. Segmentation evaluation for the walking_occ1 sequence. The table shows the PWC results for
the various approaches on four different evaluation frames and the mean values for this sequence.

Approach Frame 8 Frame 23 Frame 35 Frame 62 Mean

DEVB 8.847 7.728 10.17 8.137 8.721
ViBe 33.287 30.628 30.221 24.078 29.554

ViBe1D 29.944 26.806 31.726 14.332 25.702
MOG4D 38.186 11.195 10.798 9.185 17.341

DECB 30.262 18.616 22.371 21.162 23.103

Table 4 shows the quantitative PWC results obtained by the four approaches on the evaluation
frames from the new_ex_no_occ sequence. The proposed DEVB algorithm achieves PWC = 2.437.
This value is the lowest in Table 4, which indicates that our method performs better than the other
algorithms. ViBe1D obtains the worst result in this sequence, with PWC = 12.389.
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Figure 7. Results obtained in the test sequence new_ex_no_occ.

Table 4. Segmentation evaluation for the new_ex_no_occ sequence. The table shows the PWC results for
the various approaches on three different evaluation frames as well as the mean values for this sequence.

Approach Frame 9 Frame 43 Frame 53 Mean

DEVB 4.102 1.549 1.66 2.437
ViBe 8.188 5.832 6.097 6.706

ViBe1D 14.009 11.249 11.91 12.389
MOG4D 7.977 1.719 1.842 3.846

DECB 5.264 2.222 2.225 3.237

The fifth sequence, pigeon, is from our own test RGB-D video. The pigeon has a wide range
of activities in the scene as shown in Figure 8. It can jump onto a high platform and walk beside
a water bottle and a feeder, which serve as the background. Because of the fast and abrupt pose
changes of the pigeon, most of the tracking algorithms fail to track in most of the frames. We focus on
detection technology and on utilizing the corresponding depth images, which extracts foregrounds
more effectively and more efficiently. In addition to ghosting, ViBe1D results in much noise because of
the holes in the original depth image. DECB suffers from ghosting in all test frames.

Table 5 shows the quantitative PWC results obtained by the four approaches on the evaluation
frames from the pigeon sequence. The proposed DEVB algorithm achieves PWC = 0.778. This value is
the smallest in Table 5, which indicates that our method performs better than the other algorithms.
ViBe1D obtains the worst result on this sequence, with PWC = 2.245.
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Figure 8. Results obtained in the test sequence pigeon.

Table 5. Segmentation evaluation for the pigeon sequence. The table shows the PWC results for the
various approaches on five different evaluation frames as well as the mean values for this sequence.

Approach Frame 11 Frame 82 Frame 109 Frame 142 Frame 241 Mean

DEVB 0.972 0.626 0.897 0.204 1.191 0.778
ViBe 1.837 1.126 1.415 0.603 1.268 1.250

ViBe1D 3.559 3.025 2.156 1.224 1.261 2.245
MOG4D 1.360 0.794 1.222 0.630 1.444 1.090

DECB 1.742 1.157 1.563 1.218 2.029 1.542

Finally, Figure 9 shows the average PWC value obtained by each approach on each sequence.
According to this figure, DEVB yields the best results on every sequence. The walking_occ1 sequence
is particularly complicated because of the high pedestrian flow; consequently, for each algorithm,
the error rate is considerably increased.
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Figure 9. Average PWC values for each of the four sequences and for the entire dataset.

5. Conclusions

In this paper, we present an efficient moving object detection algorithm that fuses depth and color
information. To incorporate the features of depth images, a depth model is designed in addition to
a background model. The inspection mechanism for the classification of foreground pixels is further
considered. Finally, we propose a new updating strategy based on the developed background and
depth models, which can eliminate ghosting and black shadows almost completely. Experimental
results indicate that our method is able to extract foregrounds efficiently, providing an excellent basis
for the subsequent motion analysis of a scene. Our proposed method could serve as a convenient
research tool for the detection of moving objects captured by the Kinect sensor.
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