190 research outputs found

    Bifurcations and chaos in a gear assembly with clearances for solar array drive assembly

    Get PDF
    Solar array drive assembly is an important part of the spacecraft. It is used to rotate the solar panels. The gear assembly in solar array drive assembly plays a key role in transferring power safely. Nonlinear behavior of gear assembly, like the chaotic motion, can highly affect the stability and operating life of solar array drive assembly. Clearances in gear assembly which were neglected for simplification in past years have increased the risk of failure and become a problem in accurate control. To investigate the clearances effect on nonlinear behavior, this paper establishes a new dynamic model of the gear assembly with bilateral clearances. The main difference comparing to general spur gears is its unique hysteresis stiffness may also influence the clearance effects. Transformation of the hysteresis loop is observed from theoretical equations using different parameters. Bifurcations and chaotic analysis of the system are carried out by numerical simulations in this study. The results show that the variation of clearances may induce the chaotic behavior into gear transmission even when the primary response is stable. When the system step into the chaotic region, it has a high risk of unstable vibration and fuzzy output. The influence of excitation frequency on the chaotic motion of the system is also provided. Chaos thresholds are calculated to avoid nonlinear behavior of the system in design and control. This study makes it possible to predict the unstable clearance interval in this system and avoid the system stepping into chaotic motion. Analyzing and predicting the chaotic behaviors can contribute to the further studies on design and control of the solar array drive assembly

    Sea-Surface Object Detection Based on Electro-Optical Sensors: A Review

    Get PDF
    Sea-surface object detection is critical for navigation safety of autonomous ships. Electrooptical (EO) sensors, such as video cameras, complement radar on board in detecting small obstacle sea-surface objects. Traditionally, researchers have used horizon detection, background subtraction, and foreground segmentation techniques to detect sea-surface objects. Recently, deep learning-based object detection technologies have been gradually applied to sea-surface object detection. This article demonstrates a comprehensive overview of sea-surface object-detection approaches where the advantages and drawbacks of each technique are compared, covering four essential aspects: EO sensors and image types, traditional object-detection methods, deep learning methods, and maritime datasets collection. In particular, sea-surface object detections based on deep learning methods are thoroughly analyzed and compared with highly influential public datasets introduced as benchmarks to verify the effectiveness of these approaches. The arti

    Nonlinear rotor dynamics on turbo expander with unbalanced bearing force caused by temperature difference

    Get PDF
    This paper dedicates on the non-dimensional nonlinear rotor dynamics analysis of a turbo expander under unbalanced bearing forces caused by the temperature difference. The turbo expander rotor system is abstracted to a strictly symmetric lumped parameter model. The influence of temperature difference is simplified to the ratio of oil viscosity, which is applied on Capone oil film model. 1-Dimensional and 2-Dimensional bifurcation analysis are implemented in order to obtain the dynamic characteristics of the turbo expander rotor system. It can be concluded that the compressor wheel and the expander wheel are of the same pattern of motion in spite of the existence of the temperature difference; High temperature difference results in a high entrance point of 1-periodic motion to quasi-periodic motion, but the entrance point keeps still when the ratio of viscosity reaches some critical value. The oil-whirl, first and second order oil whip of sliding bearings are the most important factors influencing the asymmetric vibration of the compressor wheel and the expander wheel

    Novel 64Cu Labeled RGD2-BBN Heterotrimers for PET Imaging of Prostate Cancer

    Get PDF
    Bombesin receptor 2 (BB2) and integrin αvβ3 receptor are privileged targets for molecular imaging of cancer because of their overexpression in a number of tumor tissues. The most recent developments in heterodimer-based radiopharmaceuticals concern BB2- and integrin αvβ3-targeting compounds, consisting of bombesin (BBN) and cyclic arginine-glycine-aspartic acid peptides (RGD), connected through short length linkers. Molecular imaging probes based on RGD-BBN heterodimer design exhibit improved tumor targeting efficacy compared to the single-receptor targeting peptide monomers. However, their application in clinical study is restricted because of inefficient synthesis or unfavorable in vivo properties, which could depend on the short linker nature. Thus, the aim of the present study was to develop a RGD2-BBN heterotrimer, composed of (7-14)BBN-NH2 peptide (BBN) linked to the E[ c(RGDyK)]2 dimer peptide (RGD2), bearing the new linker type [Pro-Gly]12. The heterodimer E[c(RGDyK)]2-PEG3-Glu-(Pro-Gly)12-BBN(7-14)-NH2 (RGD2-PG12-BBN) was prepared through conventional solid phase synthesis, then conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODA-GA). In 64Cu labeling, the NODA-GA chelator showed superior radiochemical characteristics compared to DOTA (70% vs 40% yield, respectively). Both conjugates displayed dual targeting ability, showing good αvβ3 affinities and high BB2 receptor affinities which, in the case of the NODA-GA conjugate, were in the same range as the best RGD-BBN heterodimer ligands reported to date ( Ki = 24 nM). 64Cu-DOTA and 64Cu-NODA-GA probes were also found to be stable after 1 h incubation in mouse serum (>90%). In a microPET study in prostate cancer PC-3 xenograft mice, both probes showed low tumor uptake, probably due to poor pharmacokinetic properties in vivo. Overall, our study demonstrates that novel RGD-BBN heterodimer with long linker can be prepared and they preserve high binding affinities to BB2 and integrin αvβ3 receptor binding ability. The present study represents a step forward in the design of effective heterodimer or heterotrimer probes for dual targeting

    High-efficiency photothermal water evaporation using broadband solar energy harvesting by ultrablack silicon structures

    Get PDF
    Development of broadband absorption materials for solar energy harvesting is an important strategy to address global energy issues. Herein, it is demonstrated that an ultrablack silicon structure with abundant surface texturing can absorb about 98.7% solar light within the wavelength range of 300 to 2500 nm, i.e., a very large range and amount. Under 1 sun irradiation, the ultrablack silicon sample's surface temperature can increase from 21.2 to 51.2 °C in 15 min. During the photothermal water evaporation process, the ultrablack silicon sample's surface temperature can still reach a highest temperature of 43.2 °C. The average photothermal conversion efficiency (PTCE) can be as high as 72.96%. The excellent photothermal performance to the excellent light-trapping ability of the pyramidal surface nanostructures during solar illumination, which leads to extremely efficient absorption of light, is attributed. In addition, the large water contact area also enables fast vapor transport. The stability of the photothermal converter is also examined, presenting excellent structure and performance stabilities over 10 cycles. This indicates that the ultrablack Si absorber can be a promising photothermal conversion material for seawater desalination, water purification, photothermal therapy, and more
    corecore