85 research outputs found

    On the tensor spectral <i>p</i>-norm and its dual norm via partitions

    Get PDF

    Maximum block improvement and polynomial optimization

    Get PDF

    Group sparse optimization for learning predictive state representations

    Get PDF
    Predictive state representations (PSRs) are a commonly used approach for agents to summarize the information from history generated during their interaction with a dynamical environment and the agents may use PSRs to predict the future observation. Existing works have shown the benefits of PSRs for modelling partially observable dynamical systems. One of the key issues in PSRs is to discover a set of tests for representing states, which is called core tests. However, there is no very efficient technique to find the core tests for a large and complex problem in practice. In this paper, we formulate the discovering of the set of core tests as an optimization problem and exploit a group sparsity of the decision-making matrix to solve the problem. Then the PSR parameters can be obtained simultaneously. Hence, the model of the underlying system can be built immediately. The new learning approach doesn’t require the specification of the number of core tests. Furthermore, the embedded optimization method for solving the considered group Lasso problem, called alternating direction method of multipliers (ADMM), can achieve a global convergence. We conduct experiments on three problem domains including one extremely large problem domain and show promising performances of the new approach

    Nonnegative tensor completion via low-rank Tucker decomposition: model and algorithm

    Get PDF

    Using function approximation for personalized point-of-interest recommendation

    Get PDF
    Point-of-interest (POI) recommender system encourages users to share their locations and social experience through check-ins in online location-based social networks. A most recent algorithm for POI recommendation takes into account both the location relevance and diversity. The relevance measures users’ personal preference while the diversity considers location categories. There exists a dilemma of weighting these two factors in the recommendation. The location diversity is weighted more when a user is new to a city and expects to explore the city in the new visit. In this paper, we propose a method to automatically adjust the weights according to user’s personal preference. We focus on investigating a function between the number of location categories and a weight value for each user, where the Chebyshev polynomial approximation method using binary values is applied. We further improve the approximation by exploring similar behavior of users within a location category. We conduct experiments on five real-world datasets, and show that the new approach can make a good balance of weighting the two factors therefore providing better recommendation
    • …
    corecore