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ABSTRACT As one of the well-known real-time strategy games, StarCraft has become an important
benchmark for game artificial intelligence research. Previous works in StarCraft mostly focused on strategic
planning and tactical reasoning. One of the key issues in strategic planning, namely unit selection, is to
build up an army, so called team in this article, with appropriate units which can gain massive destroy
power against enemy’s army. It is still a challenge to determine a team that has a good chance of defeating
a specified army and there is no any formal algorithm solving it directly at present. Considering that the
number of each unit will change during a game, if the player encounters the same enemy for multiple
times, we need to select multiple winning troops, which will give the player a number of choices so as to
increase the winning chance. In this article, we formulate the team recommendation as a multi-objective
optimization problem and propose a novel team recommendation algorithm to solve the problem. We add
a normalization of the team size to the order-based fuzzy integral and the normalized order-based fuzzy
integral can better estimate the relative combat power of a team. We use genetic algorithm (GA) to learn
the fuzzy measure in the fuzzy integral from the StarCraft replay data and adopt Non-Dominated Sorting
Genetic Algorithm (NSGA-II) combined with the fuzzy integral for team recommendation. Finally we use a
simulator called SparCraft to examine the new algorithm. The experimental results show that our proposed
algorithm can recommend winning teams with a high accuracy for ordinary units in StarCraft, and the sizes
of recommended teams are mostly not larger than the size of the enemy’s team.

INDEX TERMS StarCraft; Team Recommendation; Order-based Fuzzy Integral; NSGA-II

I. INTRODUCTION

IN Real-time strategy (RTS) games, players need to gather
resources, control limited resources to build bases, pro-

duce units, and then command appropriate units to form a
team to defeat an opponent’s army in a series of skirmishes.
The main differences between RTS games and traditional
board games are that the game environments are nonde-
terministic, and players are allowed to have simultaneous
moves, durative actions and receive incomplete information
in the gameplay due to fog-of-war. StarCraft is a well-known
famous RTS game that has a large size of environmental
states and action space. It has become a popular simulation
environment for developing artificial intelligence research
in many organizations such as FAIR [1], DeepMind [2]
and Alibaba [3]. The operations in RTS games can be

roughly divided into two categories: macro-management and
micro-management. Macro-management (strategy) refers to
the long-term planning. It includes resource gathering, base
building, unit selection and technological developments.
Micro-management (tactics), i.e., the short-term control,
refers to a unit control. One of the most popular techniques
for tactical decisions is based on game tree search, such as
Alpha-Beta [4], UCT [5], and Monte Carlo planning [6].
To reduce the search space and make adversarial game tree
search feasible, Barriga et al. [7] presented a basic imple-
mentation as an example of using Puppet Search in RTS
games.

For RTS games, one of the winning keys is to produce
sufficient units and select appropriate units to constitute a
strong team that can destroy an enemy in a short time. This
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is also a great challenge in macro-management, i.e., facing a
specified troop under the command of a potential opponent,
how to select a similarly sized team from the units we own
that can eliminate the enemy. During the game, players will
produce different units according to their own build tree.
At the same time, in a series of battles, some units will be
destroyed, that is, the number of units owned by the player is
constantly changing. Therefore, when an enemy army strikes,
it is best for the player to have several different solutions
and then they can choose a suitable team to win the battle
according to the units they currently own. At present, there is
no formal approach to address this problem directly.

We first need an approach to evaluate the combat effec-
tiveness of a given team. This is not easy due to different
attributes of each kind of unit e.g., the attack or defense
capabilities. Furthermore, the interaction between different
unit types is non-additive. The combat power of a team of
two types of units may be larger or smaller than the sum of
the combat power of the two units. It is because some units
strengthen each other while some units weaken each other.
Fuzzy measure and integral could be a proper approach to
handle the non-additive property in the team evaluation. Li
et al. [8] proposed an order-based fuzzy integral that can
evaluate the combat power of a team to some extent. One
problem with this integral is that the calculated value is equal
when the proportion of each unit of the two armies is the
same, which is not in line with the actual situation. We adjust
the fuzzy integral to address this problem in this article. Then
we design an algorithm based on the fuzzy integral to select
appropriate units for a series of battles that take place in
StarCraft.

We list the main contributions as follows.

• We add a normalization of the team size to an order-
based fuzzy integral, and the normalized order-based
fuzzy integral can better learn the fuzzy measure in the
fuzzy integral.

• We consider the unit selection problem of StarCraft
as a multi-objective optimization problem (MOP) and
design a team recommendation algorithm using elitist
non-dominated sorting genetic algorithm (NSGA-II)
and the normalized order-based fuzzy integral. This is
the first team recommendation algorithm for StarCraft,
which solves the unit selection problem in the face of a
specified enemy’s team.

• Experiments with SparCraft are conducted. The experi-
mental results demonstrate that the proposed algorithm
has a good performance on the selection of general units
in StarCraft.

The remainder of this article is organized as follows. Sec-
tion II discusses the related work of macro-management and
the existing fuzzy integrals for a unit selection. Besides, we
analyze the limitations of previous fuzzy integral. Section III
reviews the knowledge of fuzzy measure, order-based fuzzy
integral and NSGA-II. We propose the new algorithm in
Section IV. Then, we compare the performance of the nor-

malized order-based fuzzy integral with order-based fuzzy
integral and utilize SparCraft to evaluate our algorithm’s
performance in Section V. Finally, Section VI summarizes
our work and discusses future work.

II. RELATED WORKS
Since team recommendation is an important issue in macro-
management, we first review related works on game macro-
management. The hard-coded approach uses finite state ma-
chine (FSM) to let an AI author hard-code the strategy [9]
[10]. A HRL approach using a set of 165 hard-coded macro
actions as the low-level has recently been successful in a
full-game StarCraft II AI [11]. Ontanon et al. [12] [13]
studied the use of real-time case-based planning (CBP) in
the domain of Wargus (a Warcraft II clone). Synnaeve and
Bessiere [14] presented a Bayesian semi-supervised model to
learn and predict openings from replays of StarCraft. Juste-
sen et al. [15] [16] proposed continual online evolutionary
planning (COEP) to continually evolve build-orders itself
during the game to adapt to an opponent. In recent years,
there are a lot of applications of reinforcement learning and
deep learning in macro-management. Justesen et al. [16]
showed how macro-management decisions in StarCraft can
be learned directly from game replay data using deep learn-
ing, and an actor-critic approach based on recurrent neu-
ral network was applied to exchange information between
units [3] [17]. Barriga et al. [18] used a deep convolutional
neural network (CNN) to select among a limited set of
abstract choices in RTS games, and to utilize the remaining
computation time for game tree search to improve low-level
tactics. In January 2019, DeepMind released AlphaStar [19],
which is the first artificial intelligence (AI) system to beat
a professional player at the game of StarCraft II. AlphaStar
plays the full game of StarCraft II using a deep neural
network that is trained directly from raw game data through
supervised learning and reinforcement learning techniques.

There is still limited research in regard to a unit selection
although it is an important issue in StarCraft. Murofushi
et al. [20] proved that the Choquet Integral was truly sig-
nificative for non-monotonic property, but there are very few
literatures in a practical application. Li et al. [8] proposed
three different fuzzy integrals for the unit selection prob-
lem: max-based fuzzy integral, mean-based fuzzy integral
and order-based fuzzy integral. Their experimental results
prove that an order-based fuzzy integral is more appropriate
in an interaction detection. They then presented a fuzzy
integral named Directional based Fuzzy Integral to support
the flank and diversion attack in unit formation planning in
RTS games [21]. Nguyen et al. [22] proposed an evaluation
method that can cope with nonadditive properties and unit
properties. This approach was also successfully applied to
heuristic search for micro-management in RTS games. Peter
and Simon [23] used fuzzy measure and integral to extend
artificial potential field. They showed a new direction for ex-
tracting behaviors from human players and provided different
unit manoeuvers.
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Li et al. [8] proposed the order-based fuzzy integral by
considering a unit production sequence. Each unit calculates
the interaction with the one who has less production. Al-
though the order-based fuzzy integral achieves good results,
we find that it can only evaluate the performance of team
proportion. Considering two teams with the same proportion,
the fuzzy integral of them is equal even if the total number of
their units is different. We concentrate on the following two
teams/armies as an example.

1) Archon: 2, Dragoon: 3, Zealot: 5
2) Archon: 4, Dragoon: 6, Zealot: 10
The composition ratios of the above two armies are equal,

i.e., the proportion of each unit is the same. Hence, the order-
based fuzzy integral of the two armies returns the same value.
However, it is apparent that two armies’ combat effectiveness
is different because of the different total number of units. In
fact, if we want to estimate the fighting capacity of a team,
it is not feasible to use order-based fuzzy integral directly.
Hence we adjust the integral for the unit selection, which will
be introduced in Section IV-A.

Most of the optimization problems are MOPs in practice.
It is difficult to make all the subgoals reach the optimal
simultaneously, and only a set of solutions that are compro-
mised by each objective are obtained, which are called the
Pareto optimal solutions. Fonseca et al. [24] first proposed
using MOGA (Multi-objective Genetic Algorithm) to solve
MOPs. NPGA (Niched Pareto Genetic Algorithm) proposed
by Srinivas and Deb [25] runs faster, but requires an appropri-
ate selection of the size of comparison set, which complicates
its practical applications. Kim et al. [26] proposed SPEA2+
(Strength Pareto Evolutionary Algorithm) using a more ef-
fective crossover mechanism and an archive mechanism
to maintain the solution diversity. PAES (Pareto Archived
Evolution Strategy) posed by Knowles and Corne [27] can
provide a local search operation. Deb et al. [28] presented
NSGA and NSGA-II exploiting non-dominated sorting. Par-
ticularly NSGA-II reduces the computational complexity of
NSGA. These methods treat MOP as a whole and mainly rely
on domination for measuring the solution quality. Zhang and
Li [29] proposed MOEA/D (Multi-objective Evolutionary
Algorithm based on Decomposition) using a decomposition
method to decompose the MOP into a number of scalar opti-
mization problems. MOEA/D performs similarly to NSGA-II
on solving some problems. Louis et al. [30] utilized NSGA-
II to optimize micro based on a multi-objective formulation
of the fitness function that maximized damage done and
minimized damage taken, the problem they attacking was
controlling teams of autonomous units during skirmishes in
real-time strategy games. They cooperatively co-evolved mi-
cro for a ranged unit using a parameterized control algorithm
along with micro for a melee unit using a pure potential fields
approach [31] [32].

III. BACKGROUND: SUBMODULAR FUNCTION
The key to fuzzy integral is fuzzy measure, and we use a
genetic algorithm (GA) to learn the fuzzy measure in the

fuzzy integral. After learning fuzzy measure with GA, the
military’s order-based fuzzy integral can be calculated. We
use this fuzzy integral and NSGA-II for team recommenda-
tion. In this section, we first introduce basic concepts of fuzzy
measure and a classic fuzzy integral. Then we introduce the
order-based fuzzy integral in detail. At last, we provide the
related knowledge of NSGA-II.

A. FUZZY MEASURE AND CHOQUET INTEGRAL
Fuzzy measure is a special non-additive measure, and it
replaces the additive property of probability measure with
weaker condition as monotonicity [33]. Assuming that
(X,σ) is a measurable space, if the mapping µ : σ → [0, 1]
satisfies

1) µ(∅) = 0, µ(X) = 1;
2) ∀A,B ∈ σ, if A ⊆ B, then µ(A) ≤ µ(B);
3) if ∀i ∈ N , Ai ∈ σ, and {Ai} is monotonous, then

lim
n→∞

µ(An) = µ( lim
n→∞

An),

then we call µ as the fuzzy measure and (X,µ) as the fuzzy
measure space.

Choquet Integral [34] is a classic fuzzy integral. Given a
fuzzy measure µ on X , the discrete Choquet integral of a
function f : X → R+ can be written as

(c)

∫
f(x) ◦ µ(X) =

n∑
i=1

([
f(xi)− f(xi−1)

]
·µ
(
{x|f(x) ≥ f(xi)}

))
,

where xi ∈ X and f(x0) = 0.

B. ORDER-BASED FUZZY INTEGRAL
For a team A, the set of unit types it contains is TY =
{x1, x2, ..., xm}, then the order-based fuzzy integral [8] esti-
mates its combat power as

Power(A) =

∫
fA(x) ◦ µ(X)

=

m∑
i=1

(
fA(xi) · µ

(
{x|fA(x) ≤ fA(xi)}

))
,

(1)

where fA(x) is defined as the proportion of unit type x
(x ∈ TY ) in A; xi is the ith unit type; m is the total of
unit types. X represents a combination of unit types, e.g.,
{x1, x2}, {x2, xm}. µ(X) is the fuzzy measure of combina-
tion X .

C. NSGA-II
In the team recommendation problem studied in this article,
we have two objectives. Hence we adopt NSGA-II [28]
which is one of the most widely used multi-objective genetic
algorithms. The main advantages of NSGA-II are as follows.

• It is a fast non-dominated sorting algorithm and reduces
the complexity of computing non-dominated sorting.
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TABLE 1: The symbols used and interpretation

Symbol Interpretation
µ(X) fuzzy measure of combination X
E enemy’s team
EY set of unit types of E
EN set of the number of each unit in EY
totalE total of units in E
C candidate team
CY set of unit types of C
CN set of number of each unit in CY
totalC total of units in C
AC set of possible unit combinations of C
N ′ population size

Mgen′ maximum generation
p′c crossover probability
p′m mutation probability

• It introduces an elite strategy to expand the sampling
space. The parent population is combined with its off-
springs to produce a new generation. This approach
ensures that good individuals are not discarded during
the evolution.

• It introduces a congestion degree and congestion de-
gree comparison operator, which not only faciliates the
NSGA to specify parameters in an easy manner , but
also ensures the population diversity.

IV. TEAM RECOMMENDATION USING ORDER-BASED
FUZZY INTEGRAL AND NSGA-II
In this section, we present the team recommendation al-
gorithm using order-based fuzzy integral and NSGA-II for
StarCraft, which we will call OFIN in the following text. We
first introduce the procedure of using GA to learn the fuzzy
measure from the StarCraft replay data and then explain the
representation of the team recommendation problem. Finally,
we introduce the OFIN algorithm in detail. The symbols used
and their explanations are summarized in Table 1.

A. LEARNING FUZZY MEASURE BY GA
To address the problem mentioned in Section II, we nor-
malize the order-based fuzzy integral of Eq. (1). Assuming
that the teams to be evaluated are S = {A,B,C,D, ...},
we adopt Min-Max normalization method and normalize the
total number of units of all teams in S. The total number
of units of each team is ts(s ∈ S). The minimum is tmin

and the maximum is tmax, then the normalized value of A
is n(A) = tA−tmin

tmax−tmin
. The normalized order-based fuzzy

integral of team A can be written below.

Power2(A) = n(A)

∫
fA(x) ◦ µ(X)

= n(A)

m∑
i=1

(
fA(xi) · µ

(
Xi

))
,

(2)

where Xi = {x|fA(x) ≤ fA(xi)}.
We also normalize team A with four different non-linear

functions: log function, L2 normalization, Arctan function
and Sigmoid function. The performance comparison of the

TABLE 2: Scores of the unit combination
extracted from the replay data

Unit combination Score
Dragoon 5 Zealot 1 700

Arbiter 1 Dragoon 10 Zealot 5 1400
Arbiter 1 Dragoon 6 Zealot 3 1000

Dragoon 13 Reaver 2 Shuttle 1 1500
Dragoon 1 Reaver 1 Zealot 1 1000

Archon 2 Dragoon 10 Zealot 2 6050
Dragoon 4 Zealot 2 400

Dark_Templar 2 Zealot 13 1000
... ...

five normalization methods will be shown in Section V-B,
and the comparison of the effects of using order-based fuzzy
integral and normalized order-based fuzzy integral will also
be shown in Section V-B.

If a battle involves n types of units {x1, x2, x3, ..., xn},
to estimate the combat effectiveness of both sides us-
ing Eq. (2), we need to obtain the 2n-1 fuzzy mea-
sures corresponding to all possible unit combinations, i.e.,
µ(x1), µ(x2), ..., µ(x1, x2), ..., µ(x1, x2, ..., xn). Each fuzzy
measure represents an interaction of the unit combination.

In StarCraft, each player will obtain a score after each
battle as the performance evaluation. The score depends on
the player’s mining income, economic and technological de-
velopments, the number of buildings and units built, and the
number of enemies and enemy buildings that are annihilated.
Hence, the score can reflect the comprehensive ability of each
team. The higher the score is, the more powerful the team
is, and the winning team has a higher score than the other.
Therefore, we use these scores to learn the fuzzy measure and
we can consider the calculated fuzzy integral in Eq. (2) as the
estimated score, i.e., the estimated power of the team [8] [35].
To do this, we extract some replay data including the unit
combination and the score of each team as Table 2 shows,
which will be introduced in detail in Section V-A. This leads
to a problem of searching for the fuzzy measure to "best" fit
the replay data. We use GA to learn the fuzzy measure from
the data.

In the GA development, we adopt real-coded chromo-
somes and each chromosome consists of 2n-1 nodes. Each
node represents a fuzzy measure and takes a decimal value
between 0 and 1. A number of chromosomes will be ini-
tialized in a random way. The fitness calculation of one
chromosome is described below.

1. Acquire the corresponding fuzzy measure from the
chromosome.

2. Extract real scores and the unit production statistic
function (aforementioned f(x)) from the collected data
and normalize the real scores as scorereal.

3. Calculate the fuzzy integral in Eq. (2) as the estimated
score scoreest.

4. Calculate the root mean square error (RMSE) over the
training data.

4 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

RMSE =

√√√√ 1

H

H∑
i=1

(
scoreest(i)− scorereal(i)

)2
,

where i is the ith team in the training data, H refers to
the total number of armies.

5. Compute the fitness value:

Fitness V alue =
1

1 +RMSE
.

In the evolution process, the chromosome with a high
value of fitness will be treated as a better chromosome. The
learning process is repeated until the fitness value is stable
or the iteration exceeds the maximum generation. After that,
a set of reasonable fuzzy measures for our replay data are
obtained.

B. TEAM RECOMMENDATION PROBLEM
FORMULATION
Team recommendation problem in StarCraft is formulated as
follows. Given an enemy’s team E, the set of its unit types is
EY = {e1, e2, · · · , eK}, the number of each unit in EY is
EN = {ne1, ne2, · · · , neK} and the total number of units in
E is totalE . The units owned by a subject player is C, the set
of unit types of C is CY = {c1, c2, · · · , cL}, the number of
each unit in CY is CN = {nc1, nc2, ..., ncL} and the total of
units in C is totalC . We aim to select several teams from C
in order to defeat the enemy team E.

All possible unit combinations of the candidates AC ={
{c1}, · · · , {c1, c2}, · · · , {c1, c2, · · · , cL}

}
. For each com-

bination m = {c1, c2, · · · , cl} (1 ≤ l ≤ L), we need
to determine the number of each unit in a combination{
hc1, hc2, · · · , hcl

}
, so that the team M consisting of the

determined number of units can defeat the enemy. Hence,
for the combination m, our goal is to maximize the normal-
ized order-based fuzzy integral of it and minimize the total
number of its units, as described in Eq. (3). This is a MOP
with two objective functions and the decision variables are
the number of each unit in M , i.e., hci (i = 1, 2, · · · , l).

max Power2(M) = n(M)

∫
fM (c) ◦ µ(C)

min Size(M) =

l∑
i=1

hci (3)

s.t. 0 ≤ hci ≤ nci, i = 1, 2, · · · , l

C. OFIN ALGORITHM
In Algorithm 1, we develop the OFIN algorithm to solve
the team recommendation in for StarCraft. N ′ represents the
population size,Mgen′ is the maximum generation, p′c is the
crossover probability and p′m is the mutation probability. For
each combination, we adopt NSGA-II to solve the MOP in
Eq. (3) and get a set of pareto optimal solutions pop (lines
2-3). The process of NSGA-II is shown in Algorithm 2.

In NSGA-II, for each new population, firstly, calculate two
parameters of each individual i: the number of individuals
who dominate i and the set of individuals that are dominated
by i. The whole population is stratified according to these two
parameters, namely Fast_Non_Dominated_Sort. Next, the
crowding distance of each individual in each non-dominated
layer is calculated according to the objective function, i.e.,
Crowding_Distance_Calculation. Then N individuals with
lower non-dominated levels or larger crowdedness are se-
lected as the next new population. For details of NSGA-II,
please refer to [28]. Algorithm 3 describes the Sort(pop)
process of NSGA-II. After that, the total number of units
of each pareto solution and the enemy are normalized. The
normalized values are stored in set SN ′ (lines 4-9). Then,
the fuzzy integral of each pareto solution and the enemy can
be calculated. We will add the pareto solution with fuzzy
integral greater than or equal to the fuzzy integral of enemy
(Power2(E)) to set T (lines 10-17). Next, for each solution
in T , if its total number of units is the smallest in T , we
will add it to the target team set WT (lines 18-22). After
traversing all the combinations, all the teams in WT are the
recommended teams upon the given enemy team.

Algorithm 1 OFIN

Input: E(enemy team), totalE(size of E);
C(candidate team), totalC(size of C);
AC(all unit combinations of C);
µ(X)(fuzzy measure);N ′,Mgen′, p′c, p

′
m

Output: WT (set of recommended teams)
1: WT ← ∅, T ← ∅
2: for each m ∈ AC do
3: pop← NSGA− II(N ′,Mgen′, p′c, p

′
m)

4: S′ ← ∅, p← 0
5: while p < N ′ do
6: S′ ← S′ ∪ sum(pop[p]), p← p+ 1
7: end while
8: S′ ← S′ ∪ totalE
9: SN ′ ← normalize(S′)

10: calculate Power2(E), p← 0
11: while p < N ′ do
12: calculate Power2(pop[p])
13: if Power2(pop[p]) ≥ Power2(E) then
14: T ← T ∪ pop[p]
15: end if
16: p← p+ 1
17: end while
18: for each t ∈ T do
19: if Size(t) = min(T ) then
20: WT ←WT ∪ t
21: end if
22: end for
23: end for
24: return WT

Using the OFIN algorithm, we can select some suitable
units from the candidates to form a team to fight against the
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Algorithm 2 NSGA-II(N ′,Mgen′, p′c, p
′
m)

1: initialize pop
2: NS ← Sort(pop)
3: pop2← make_new_pop(NS, p′c, p

′
m)

4: gen = 0
5: while gen < Mgen′ do
6: hbpop← pop ∪ pop2
7: NS′ ← Sort(hbpop)
8: Crowding_Distance_Calculation(NS′)
9: pop← select N ′ individuals from hbpop

10: pop2← make_new_pop(pop, p′c, p
′
m)

11: gen← gen+ 1
12: end while
13: return pop

Algorithm 3 Sort(pop)

1: S ← ∅, p← 0
2: while p < N ′ do
3: S ← S ∪ sum(pop[p]), p← p+ 1
4: end while
5: SN ← normalize(S)
6: p← 0, Power2← ∅, Size← ∅
7: while p < N ′ do
8: Power2← Power2 ∪ Power2(pop[p])
9: Size← Size ∪ Size(pop[p]), p← p+ 1

10: end while
11: NS ← Fast_Non_Dominated_Sort(Power, Size)
12: return NS

enemy in the case of knowing the opponent’s team. In the
next section, we will conduct experiments to demonstrate the
effectiveness of the above algorithm.

V. EXPERIMENTS
We demonstrate the performance of OFIN by simulating
battles in the SparCraft platform. In this section, we first
describe the dataset and the data preprocessing. Then, we
compare the effects of using the order-based fuzzy integral
and the normalized order-based fuzzy integral to learn the
fuzzy measure. After that, we discuss the the parameter
settings of NSGA-II. Lastly, we detail the simulation of the
recommended teams and analyze the simulation results.

A. DATASET AND PREPROCESSING
We choose StarCraft: Brood War (SC: BW) as the simulation
platform and it is an expansion of StarCraft. It was officially
released in 1998 and becomes extremely popular as an e-
sport. We focus on SC: BW as it has gained the most popular-
ity within the field of game AI, while the presented approach
can be applied to all the games in the StarCraft series as
well as similar RTS games. The Brood War Application
Programming Interface (BWAPI1) is a free and open source

1https://github.com/bwapi/bwapi

C++ framework that is used to interact with SC: BW, and it
has been the foundation of several StarCraft AI competitions.
Using BWAPI, researchers can write competitive AI for SC:
BW by controlling individual units, analyze replays frame-
by-frame and examine real-time AI algorithms in a robust
commercial RTS environment. Players have the options to
save a replay file after each game in StarCraft. Replay files
contain the set of actions performed by both players, which
the StarCraft engine can use to reproduce the exact events.
Therefore, replay files are a great resource for machine learn-
ing if one wants to learn how players are playing the game. In
this paper, we use BWAPI to extract useful information from
replay files to learn the fuzzy measure.

There are three races in StarCraft - Protoss, Terran and
Zerg. Each race has different units, buildings, and upgrade
options. We only do the experiment of the Protoss v.s. Pro-
toss match-up since this is the only match-up that provides
multiple most used types and is available in SparCraft which
will be described in Section V-D1. We collect 300 replays of
professional one-versus-one competitions of SC: BW from
ICCup2, and write a C++ program in BWAPI and extract
2254 battles from 300 replays. We use 1000 battles among
them for the experiments. Hence there are total 2000 armies
in the training data because each battle includes two sides.
There are 8 units of Protoss involved in the 2000 teams:
Dragoon, Zealot, Archon, Dark Templar, Reaver, Shuttle,
High Templar and Arbiter. Two kinds of data are included
in each battle. One is the unit statistics of the teams of both
players, i.e., the type and number of each unit. The other is
the score of the team obtained after each battle. Scores are
given by the SC: BW system after the winner defeats his
opponent, and the scores will be normalized to learn the fuzzy
measure.

B. COMPARISON OF LEARNING PERFORMANCE OF
FUZZY MEASURE
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Fig. 1: Comparison of best fitness with different
normalization methods.

We use GA to learn the fuzzy measure with the order-based
fuzzy integral and the normalized order-based fuzzy integral

2http://iccup.com/en/starcraft/replays.html
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(a) Order-based fuzzy integral
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(b) Order-based fuzzy integral
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(d) Normalized order-based fuzzy integral
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(e) Normalized order-based fuzzy integral
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(f) Normalized order-based fuzzy integral

Fig. 2: Comparison of best fitness
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(a) Order-based fuzzy integral
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(b) Order-based fuzzy integral
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(c) Order-based fuzzy integral
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(d) Normalized order-based fuzzy integral
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(e) Normalized order-based fuzzy integral
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(f) Normalized order-based fuzzy integral

Fig. 3: Comparison of average fitness
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(a) Order-based fuzzy integral
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(b) Order-based fuzzy integral
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(c) Order-based fuzzy integral
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(d) Normalized order-based fuzzy integral
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(e) Normalized order-based fuzzy integral
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(f) Normalized order-based fuzzy integral

Fig. 4: Comparison of variance of fitness

respectively. The comparison of best fitness using the nor-
malized order-based fuzzy integral with different normaliza-
tion methods is shown in Fig. 1. As expected, the Min-Max
normalization performs best. Fig. 2 shows the comparison
of best fitness of order-based fuzzy integral and normalized
order-based fuzzy integral. Fig. 3 shows the comparison of
average fitness. Fig. 4 shows the comparison of variance of
fitness. In Figs. 2-4, each column compares the performance
of order-based fuzzy integral and normalized order-based
fuzzy integral with the same parameters of GA, and each
subgraph compares the effect of different parameters of GA
on performance. We separately adopt binary and ternary
tournament, different pc, pm, different methods of crossover
and mutation to find the best combination of parameters.
Finally, we adopt ternary tournament selection, single-point
crossover and single-point mutation, N = 500, Mgen =
200, pc = 0.95 and pm = 0.05. From each column, it can be
clearly seen that the normalized order-based fuzzy integral
significantly improves the convergence accuracy contrasted
to the order-based fuzzy integral. Since the normalized order-
based fuzzy integral takes into account the total number of
units in the team, which has a great influence on the combat
effectiveness of the team, it can better assess the combat
power of the team and better learn the fuzzy measure.

C. SETTING OF NSGA-II

In the team selection, we apply NSGA-II to each unit combi-
nation to find the pareto optimal solution of the combination.

We refer to [28] for parameter setting of NSGA-II. We adopt
real-coded GA, the binary tournament selection, Simulated
Binary Crossover (SBX) operator and polynomial mutation.
Parameter settings: N ′ = 100, Mgen′ = 50, p′c = 0.9
and p′m = 1

n (where n is the number of decision variables).
The distribution indexs for SBX and polynomial mutation
are ηc = 1 and ηm = 1, respectively. Fig. 5 shows the
pareto solutions of a combination of four kinds of units when
p′c = 0.9 and p′m = 1

n , Fig. 6 shows the pareto solutions
when p′c = 0.9 and p′m = 0.05, Fig. 7 shows the pareto
solutions when p′c = 0.95 and p′m = 0.05, Fig. 8 shows
the pareto solutions when p′c = 0.95 and p′m = 1

n . We
can see that when p′c = 0.9 and p′m = 0.05, solutions can
basically converge to the pareto optimal solutions in the 25th
generation. Under the other parameter settings, the results are
not much different, and they all converge around the 20th
generation.

For comparison with NSGA-II, we also apply MOEA/D [29]
to find the Pareto optimal solutions of each unit combination.
The basic parameter settings are the same as NSGA-II. Fig. 9
shows the Pareto solutions of a combination of four kinds of
units when using MOEA/D. The results show that by the 50th
generation, solutions have not yet converged to the Pareto
optimal solutions.

D. SIMULATION OF RECOMMENDED TEAMS
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Fig. 5: Pareto solutions for each generation of a combination of four kinds of units when p′c = 0.9 and p′m = 1
n . Points with

the same color are solutions on the same non-dominated front. The horizontal axis represents army scale and the vertical axis
represents normalized order-based fuzzy integral.
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Fig. 6: Pareto solutions for each generation of a combination of four kinds of units when p′c = 0.9 and p′m = 0.05. Points with
the same color are solutions on the same non-dominated front. The horizontal axis represents army scale and the vertical axis

represents normalized order-based fuzzy integral.
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Fig. 7: Pareto solutions for each generation of a combination of four kinds of units when p′c = 0.95 and p′m = 0.05. Points of
the same color are solutions on the same non-dominated front. The horizontal axis represents army scale and the vertical axis

represents normalized order-based fuzzy integral.

1) SparCraft

We use SparCraft as the simulation platform in the exper-
iments. SparCraft is developed by David Churchill [36].
It is an open source simulation package that can simulate
StarCraft combats with a high level of accuracy. In Spar-
Craft, units can be given commands of attack, move and
wait [5]. All unit attributes such as size, speed, armor, cool-
down times, hit points and weapon types are modelled pre-
cisely from StarCraft except for acceleration, with all units
having constant speed while moving. The whole upgrades
and research are modelled. Nonetheless, spell casters and
some units (Reaver, Bunker, Carrier, Transport) are not yet
implemented. It does not yet carry out unit collisions or fog of
war, either. SparCraft allows battles to be set up and carried

out in accordance with deterministic play-out scripts, or by
search-based agents. Investigators can easily implement new
algorithms, integrate them into this simulator and use it as a
test bed for their own research. This simulator can merely
support simulations of a limited types of units, only four
of the Protoss: Dragoon, Zealot, Archon and Dark Templar.
Therefore, our experiment only covers these four units.

2) Simulation Settings
In our work, we adopt Portfolio Greedy Search for both
players, which is proposed by David Churchill and Michael
Buro in [5]. Portfolio Greedy Search uses playouts together
with the LTD2 evaluation formula [37]. It takes as input an
initial combat state, a set of scripts called a portfolio and
two integer values I and R. I is the number of improvement
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Fig. 8: Pareto solutions for each generation of a combination of four kinds of units when p′c = 0.95 and p′m = 1
n . Points of the

same color are solutions on the same non-dominated front. The horizontal axis represents army scale and the vertical axis
represents normalized order-based fuzzy integral.
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Fig. 9: Pareto solutions for each generation of a combination of four kinds of units when using MOEA/D. Points of the same
color are solutions on the same non-dominated front. The horizontal axis represents army scale and the vertical axis represents

normalized order-based fuzzy integral.

iterations and R is the number of responses. As an output, it
produces a player move. Using the same search technique for
both sides can eliminate the noise caused by different skill
levels and playing style of players. We refer to the parameter
setting in [5] when we set the Portfolio Greedy Search: I=1,
R=0 and time limit=40ms. The portfolio includes two scripts,
i.e., NOK-AV and Kiter.
• NOK-AV (No-OverKill-Attack-Value): Units will at-

tack an opponent unit with the highest damage per frame
(or hit points) within range when it is able to fire.
However, it will not attack units that have already been
targeted and can be defeated by other friendly units this
round. It will instead choose the next priority target, or
wait if such a target does not exist.

• Kiter: Units will attack the closest enemy unit within
their weapons’ range, and it tends to move a fixed
distance away from the closest enemy when it can not
fire.

To run the simulation, we should specify what initial states
of both players will be used. There are three categories of
states that can be specified by the game settings file: State
Description File, Symmetric State, and Separated State. The
latter two methods can only specify the same units for both
players. Consequently, they can not meet our experimental
requirements. Therefore, we adopt the first method, i.e., State
Description File. States are defined by an external file which
lists all initial units and their properties. In the description
file, we can assign the initial units each player controlled and

the initial position of each unit on the map.

3) Simulation Results
Since both sides use the same search algorithm, it is only
the different unit composition that determines the final out-
come. Therefore, after determining the team of the player
and the enemy, only one simulation is required for each
battle, the accuracy of our experiment is determined by how
many outcomes this algorithm can predict correctly (i.e., how
many teams recommended can win). We conduct a series of
experiments and repeat each experiment for 50 times. The
results of the experiments are fairly stable and shown in
Table 3. In addition, we adopt MOEA/D, random strategy
and heuristic method (i.e., based on experience) for the
team recommendation. The comparison of the recommended
accuracy of the four methods is shown in Fig. 10.

4) Result Discussion
In Table 3, we can see that, for most enemy troops, the
proposed algorithm can recommend winning teams with a
high accuracy, and it is worth mentioning that the total
number of units of each recommendation is smaller than or
equal to the total of enemy units. However, for the enemy
armies with a large proportion of Archon, the accuracy
of the recommendation of our algorithm is relatively low.
Considering that Archon has sputter damage, i.e., special
skill, when Archon has a large proportion of the enemy, our
algorithm cannot accurately recommend all winning teams.
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TABLE 3: Results of the experiments
(Candidates: A:5, Dr:5, Z:5, Da:5)

Enemy Recommendation Can win? AccuracyA Dr Z Da

Z:4, A:2,
Dr:3, Da:5

4 5 5 0 Yes

80%
4 4 0 4 Yes
5 0 5 4 Yes
0 5 5 4 No
3 3 4 3 Yes

Z:5, Dr:2,
Da:4

5 0 0 5 Yes

83.3%

2 4 4 0 Yes
3 3 0 3 Yes
3 0 5 2 Yes
0 4 4 2 No
2 2 3 2 Yes

Z:3, A:2,
Da:5

5 5 0 0 Yes

71.4%

5 0 0 4 Yes
2 4 4 0 Yes
3 3 0 3 Yes
3 0 5 2 Yes
0 4 4 2 No
2 2 3 2 No

Z:3, A:4,
Da:2

3 5 0 0 No

25%

4 0 5 0 Yes
5 0 0 3 Yes
0 4 5 0 No
0 5 0 4 No
2 3 3 0 No
4 4 0 0 Yes
0 4 0 4 No
4 0 0 4 No
3 0 3 2 No
0 3 3 2 No
2 2 3 1 No

A:3, Dr:6

4 5 0 0 Yes

28.6%

5 0 0 4 Yes
2 4 4 0 No
3 3 0 3 No
3 0 5 2 No
0 4 4 1 No
2 2 3 2 No

A-Archon, Dr-Dragoon, Z-Zealot, Da-Dark Templar.

E n e m y 1 E n e m y 2 E n e m y 3 E n e m y 4 E n e m y 5
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1 0 0

Ac
cu

rac
y(%

)

 O F I N
 M O E A / D
 H e u r i s t i c
 R a n d o m

Fig. 10: Comparison of the recommended accuracy of four
methods.

This is because that the units with special skills interact
with other units more complexly, and we can’t learn all the
situations in which their skills are released through our replay
data. As can be seen from Fig. 10, among the four methods,

the recommended accuracy of OFIN in the experiments of
Enemy1 and Enemy3 is the highest. In the second experiment
of Enemy2, the accuracy of MOEA/D is 100%. However,
it recommends only one team. Besides, the results recom-
mended by MOEA/D in all experiments are unstable and they
depend on the population size and the number of iterations. In
the latter two experiments involving powerful units, although
the heuristic strategy has the highest accuracy, the size of
the team selected is relatively large since we always tend
to choose a large team by experience. By contrast, the team
selected by OFIN is relatively small. Overall, the proposed
OFIN performs best when considering accuracy, stability
and the team size at the same time. In summary, our new
algorithm achieves satisfactory results for the ordinary units
in StarCraft.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a team recommendation algo-
rithm (OFIN), which combines NSGA-II with the order-
based fuzzy integral in StarCraft. We initially solve the prob-
lem of how to select several winning teams from candidate
units when an enemy team is given. Firstly, we use the
normalized order-based fuzzy integral as a measure of the
overall combat effectiveness of a team in RTS games. To
calculate the fuzzy integral, we need to get the fuzzy measure
in the fuzzy integral. Hence we collect a lot of replays of
professional competitions of StarCraft as our training data
and use GA to learn the fuzzy measure. Experiments show
that the normalized order-based fuzzy integral can better
approximate the replay data compared to the order-based
fuzzy integral and it can better learn the fuzzy measure. Then,
we formulate the team recommendation problem in StarCraft
as a MOP with two objectives that maximize the normalized
order-based fuzzy integral and simultaneously minimize the
size of the team. After that, we solve the MOP using NSGA-
II. Finally, we select the winning teams based on the fuzzy
integral of Pareto solutions and the team size. We conduct
several experiments in StarCraft and the results show that
the OFIN algorithm can suggest teams that can win for a
specified enemy troop with a high accuracy, and the scale of
each recommendation is no larger than the size of the enemy.
For units that are more powerful or have special skills, OFIN
performs slightly worse. Therefore, OFIN has a good guiding
significance for players to choose appropriate units in the face
of ordinary enemy units in StarCraft.

OFIN cannot achieve good performance for some special
units, and this is exactly one of the problems that we will
try to address in the future. In addition, our current research
assumes that the player knows the composition of the enemy
army without considering the fog of war. However, due to
the existence of the fog of war in a real-world actual game
environment, players cannot see the formation of the enemy’s
army, and they cannot judge the enemy’s attack time in
advance. Therefore, in order to apply the OFIN algorithm
to the actual game process, we will conduct more research
in the future, including inferring the moment of the enemy’s
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attack and the army to be dispatched. Achieving a dynamic
team recommendation is our ultimate goal.
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