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ABSTRACT We consider the problem of low-rank tensor decomposition of incomplete tensors that has
applications in many data analysis problems such as recommender systems, signal processing, machine
learning and image inpainting. In this paper, we focus on nonnegative tensor completion via low-rank
Tucker decomposition for dealing with it. The speciality of our model is that the ranks of nonnegative Tucker
decomposition are no longer constants, while they all become a part of the decisions to be optimized. Our
solving approach is based on penalty method and block coordinate descent method with prox-linear updates
for regularized multiconvex optimization. We demonstrate the convergence of our algorithm. Numerical
results on the three image datasets show that the proposed algorithm offers competitive performance
compared with other existing algorithms even though the data is highly sparse.

INDEX TERMS Nonnegative tensor completion, nonnegative Tucker decomposition, adjustable core
tensor size, block coordinate descent

I. INTRODUCTION

DATA collected in real life may not be completely ac-
curate due to various factors such as collection diffi-

culties, noise interference, and manually identified unwanted
outliers. As such, some data may be missing and should be
completed. These can all lead to the completion problem
for missing data. Most data can be expressed in the form of
matrix, since matrix is a commonly powerful tool to express
and store these data. Hence, many practical problems can
be transformed to study matrix completion [1]–[3]. Usually
when looking for a solution, the matrix is assumed to be
low rank [1], [4], [5]. The low rank matrix completion has
a wide range of applications. For example in image pro-
cessing, low resolution input images can be reconstructed
into high resolution images by solving image interpolation
problem using matrix completion and recovery method [6].
In recommendation systems, after users submit their scores
on the corresponding items to the database, the system makes
recommendations to other users by analyzing these data.
However, in reality, users typically score only several items.
At this point, the system must estimate users’ preferences for
non-scoring items, which can be realized by performing ma-

trix completion [7], [8]. In the medical field, regular medical
records aid medical staff in analyzing and monitoring patient
health status. However, these records are usually incomplete
due to unpunctuality and absence of patients. By using the
method of matrix decomposition under some latent factors
to obtain the complete medical record data, experimental
results indicate that the proposed algorithm can perform well
compared with existing methods [9].

With the rapid development of science and technology, the
generation of abundant data has exceeded people’s imagina-
tion, resulting in redundant storage space, increasing compu-
tational cost, and other issues. The form of matrix data may
not fully demonstrate the essential characteristics of high-
dimensional data. Therefore, how to find a concise repre-
sentation for these data has gained more and more attention.
Under this circumstance, using tensors to express high-order
data has become a trend in data expression. The tensors are a
high-dimensional extension of vectors and matrices. Urgent
analysis of high dimensional data now widely appears in
signal processing, machine learning and data analysis. In the
present study, we consider the problem wherein only part
of the data is obtained when observing or collecting. We
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also discuss the effectiveness of the process of missing data
completion, and we aim to solve this problem via tensor
completion. Tensor completion is a powerful tool that is
used to estimate or recover missing values in multi-way data,
which arises in various research areas, such as recommenda-
tion systems [10], multi-class learning [6], data mining [11],
computer vision [12], [13], and traffic [14]–[16].

By taking advantage of both low-rankness and nonnegative
factors, Xu et al. [17] had shown that superior results can
be generally obtained, compared with just using one of the
two aspects for nonnegative matrix completion problems.
Following by the spirit of [17], we, in this paper, consider
the nonnegative tensor completion problem for nonnegative
data, and we solve it by performing nonnegative Tucker
decomposition, which decomposes the high-order tensor into
a low-rank core tensor in every mode multiplied by a matrix,
where the core tensor and the matrices are all nonnegative. A
Tucker decomposition with a rank of (r1, r2, . . . , rd) means
that the size of the core tensor is (r1×r2×· · ·×rd), where the
parameters (r1, r2, . . . , rd) are predetermined traditionally.
Nonetheless, this is limited in some applications. Therefore,
we consider a new nonnegative Tucker decomposition model
with an adjustable core tensor size when the sum of the tensor
rank (

∑d
i=1 ri = c) is fixed. Then, the most reasonable

dimension of size (r1, r2, . . . , rd) is selected automatically
through an optimization process. In particular, we resort
to a classical block coordinate descent type search method
for regularized multiconvex optimization, which suits well
for our model. Finally, we report how the block coordinate
descent method can be applied to solve our problem, along
with a convergence result of our algorithm.

The rest of the paper is organized as follows. In Section
II, we discuss some relevant works on the tensor completion
problem. In Section III, we introduce some basic operations
on tensors, block coordinate descent method, and nonnega-
tive tensor completion problem. In Section IV, we present a
new model for the nonnegative tensor completion problem
on the basis of the nonnegative Tucker decomposition with
unspecified core tensor size. Then, we solve it on the basis of
the penalty method and the block coordinate descent method.
In Section V, we demonstrate the performance of our new
model and method using several image datasets. Finally we
conclude our work in Section VI.

II. RELATED WORK
On the task of filling in incomplete data (i.e., data with
missing, unknown or unreliable values) for many high-
dimensional data, also known as the tensor completion prob-
lem, one can transform it as a low rank tensor decomposi-
tion (or approximation) problem, since the normal structural
assumption on a tensor that makes the completion problem
well posed is that the tensor has low rank in every mode [18].
Usually, CANDECOMP/PARAFAC (CP) decomposition and
Tucker decomposition are employed. The technique can well
recover the incomplete data either on synthetic data or on
real-world visual data, see e.g., [13], [18]–[20].

Royer et al. [21] implemented the CP decomposition using
the conjugate gradient and the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithms for tensor completion problems.
To handle the incomplete data, Yokota et al. [20] proposed a
new low-rank smooth CP decomposition method that is dif-
ferent from the existing methods. In their proposed method,
they considered two types of smoothness constraint. Instead
of setting the upper bound of the expected rank of the
tensor, their algorithm increased the number of components
gradually until the optimal rank was reached. Results in-
dicated that the efficiency of their method on visual data
outperformed some other popular algorithms. However, their
method does not guarantee global convergence. To han-
dle high-dimensional, large-scale datasets and applications,
Karlsson et al. [22] proposed novel parallel algorithms for
tensor completion in the CP format. More recently, Kaya
and Uçar [23] proposed a novel computational framework
for reducing the cost of a core operation in computing the
CP decomposition for sparse tensors. However, they do not
address the issue on selecting an appropriate rank for tensor
completion via CP decomposition.

A similar issue also exists in tensor completion via Tucker
decomposition, i.e., determining the rank of the core tensor
in the presence of missing entries and noise. This issue is
challenging, because it is already difficult to compute a Tuck-
er decomposition of rank (r1, r2, . . . , rd), where rk is less
than the column rank of mode-k unfolding of a given tensor
for one or more k [24]. In this case, the methods based on
the Tucker decomposition usually perform poorly. Therefore,
many researchers have investigated on this issue. Chen et
al. [25] proposed a new computational model for a low-rank
Tucker decomposition where the configuration and the size
of the core become part of the decisions to be optimized.
Their algorithm guaranteed to converge to a stationary point
of their model. To determine the multilinear rank of high-
dimensional datasets automatically, Yang et al. [26] used a
group-based, log-sum penalty functional for placing struc-
tural sparsity over the core tensor. Then, they proposed an
iterative reweighted algorithm to decompose an incomplete
tensor into a concise Tucker decomposition. Meanwhile,
Filipović and Jukić [18] proposed a simple algorithm for
Tucker decomposition of a sparse tensor and its application
to low-n-rank tensor completion. They demonstrated that
the proposed algorithm performs well even when the ranks
are over estimated. However, no theoretical guarantee has
been provided for their proposed method. Recently, Sejoon
Oh et al. [27] proposed the P-TUCKER, a scalable Tucker
decomposition method for sparse tensors, which performs
alternating least squares with a row-wise update rule in a
fully parallel way. Hence, it saves much computational time
and substantially reduces memory requirements for updating
factor matrices.

On the basis of the relevant research, we consider the
nonnegative tensor completion problem via Tucker decom-
position. In relation to this, we propose a new model for
the problem concerned that can determine the size of the
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core tensor automatically. Finally, we provide a theoretical
guarantee for our algorithm.

III. PRELIMINARIES

A. OVERVIEW OF TENSORS
In this paper, we use calligraphic letters, capital letters,
boldface lowercase letters, and non-bold lowercase letters
to denote tensors, matrices, vectors, and scalars. For exam-
ple, tensor G, matric A, vector y and scalar i. We use the
subscripts to denote the element of a tensor, a matrix, or
a vector, e.g., Gijk represents the (i, j, k)-th element of the
tensor G, Aij represents the (i, j)-th element of matrix A,
yi represents the i-th element of vector y. Below we list
some tensor operations and properties, most of which follow
from the survey paper [24]. For more details, please also refer
to [24].

A tensor is a multidimensional array, and the order of a ten-
sor is the number of its dimensions, also known as the ways
or the modes of a tensor. Particularly, a vector is a 1st order
tensor, and a matrix is a 2nd order tensor. For a d-th order
tensor G = (Gi1i2...id) ∈ Rn1×n2×···×nd , where d ≥ 3, it has
d modes, namely, mode-1, mode-2, . . . , mode-d. Denote the
mode-k matricization (or unfolding) of tensor G to be G(k),
then the (i1, i2, . . . , id)-th entry of tensor G is mapped to the
(ik, j)-th entry of matrix G(k) ∈ Rnk×

∏
`6=k n` , where

j = 1 +
∑

1≤`≤d,`6=k

(i` − 1)
∏

1≤t≤`−1,t6=k

nt.

One important tensor operation is the multiplication of a
tensor by a matrix. The k-mode product of tensor G by a
matrix U ∈ Rm×nk , denoted by G ×k U , is a tensor in
Rn1×n2×···×nk−1×m×nk+1×···×nd , which is defined by

(G×k U)i1i2...ik−1` ik+1...id =

nk∑
ik=1

Gi1i2...ik−1ikik+1...idU`ik .

For better understanding this multiplication, we can rewrite
the equation in terms of tensor unfolding, i.e.,

Y = G ×k U ⇐⇒ Y(k) = UG(k).

Moreover, the k-mode product of tensor G by multiple matri-
ces U (k) ∈ Rmk×nk , k = 1, 2, . . . , d can also be expressed
by the matrix Kronecker product as follows:

Y = G ×1 U
(1) ×2 U

(2) · · · ×d U (d)

⇐⇒ Y(k) = U (k)G(k)

(
U (d) ⊗ · · · ⊗ U (k+1)

⊗U (k−1) ⊗ · · · ⊗ U (1)
)T
,

for any k = 1, 2, . . . , d.
Analogous to the Frobenius norm of a matrix, the Frobe-

nius norm of tensor G is the usual 2-norm, defined by

‖G‖F :=

√√√√ n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

Gi1i2...id
2.

We uniformly denote the 2-norm for vectors, and the Frobe-
nius norm for matrices and tensors, all by notation ‖ · ‖F
throughout this paper. Moreover, we denote the spectral norm
for matrices by ‖ · ‖2.

The k-rank of tensor G, denoted by rank k(G), is the
column rank of mode-k unfolding G(k), i.e., rank k(G) =
rank (G(k)). A d-th order tensor whose rank k(C) = rk
for k = 1, 2, . . . , d, is briefly called a rank-(r1, r2, . . . , rd)
tensor. One important tensor decomposition is Tucker de-
composition. It decomposes a tensor G in the form of G =
C ×1 A

(1) ×2 A
(2) · · · ×d A(d), where C ∈ Rr1×r2×···×rd is

called the core tensor, and A(i) ∈ Rni×ri , i = 1, 2, . . . , d,
are called factor matrices.

B. A BLOCK COORDINATE DESCENT ALGORITHM FOR
REGULARIZED MULTICONVEX OPTIMIZATION
Let us focus on the regularized multiconvex optimization
problem and its corresponding block coordinate descent
method discussed in Xu and Yin [19].

min
x∈χ

F (x1, . . . ,xs) ≡ f(x1, . . . ,xs) +
s∑
i=1

vi(xi),

where x is decomposed into s block variables x1, . . . ,xs,
χ is a set of feasible points, assuming that it is a closed,
block multi-convex subset of Rn, f is a differentiable block
multi-convex function, vi, i = 1, 2, . . . , s, are extended-
value convex functions. The idea of Gauss-Seidel iterative
block coordinate descent (BCD) method is to minimize F by
cycling over each of x1, . . . ,xs while fixing the remaining
block variables. Let xki represent the value of xi after its kth
update, and let

fki (xi) , f(xk1 , . . . ,x
k
i−1,xi,x

k−1
i+1 , . . . ,x

k−1
s ),

χki , χ(xk1 , . . . ,x
k
i−1,xi,x

k−1
i+1 , . . . ,x

k−1
s ),

for all i and k. One choice of update schemes for xki is to find
the optimal solution for the prox-linear subproblem

xki = arg minxi∈χki 〈ĝ
k
i ,xi − x̂k−1

i 〉

+
Lk−1
i

2

∥∥∥xi − x̂k−1
i

∥∥∥2

F
+ vi(xi), (1)

where parameter Lk−1
i > 0, and

x̂k−1
i = xk−1

i + ωk−1
i (xk−1

i − xk−2
i )

denotes an extrapolated point, ωk−1
i ≥ 0 is the extrapolation

weight, and ĝki = ∇fki (x̂k−1
i ) is the block-partial gradient

of f at x̂k−1
i . It has been found that the updating rule (1) on

all or some blocks could result in achieving lower objective
values, and consuming less computational efforts as well.
Moreover, it can be proved that Algorithm 1 has convergence
guarantee under some mild conditions. With these benefits,
we will choose the prox-linear rule for handling our new
model later. One is referred to [19] for more details.
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Algorithm 1: BCD method with prox-linear updates
1: Initial points (x−1

1 , . . . ,x−1
s ) = (x0

1, . . . ,x
0
s).

2: for k = 1, 2, . . . do
3: for i = 1, 2, . . . , s do
4: xki = arg minxi∈χki

〈ĝki ,xi − x̂k−1
i 〉

+
L
k−1
i
2

∥∥xi − x̂k−1
i

∥∥2

F
+ vi(xi)

5: end for
6: if stopping criterion is satisfied then
7: Return (xk1 , . . . ,x

k
s )

8: end if
9: end for

C. NONNEGATIVE TENSOR COMPLETION PROBLEM
One traditional way for dealing with nonnegative tensor
completion problem is through nonnegative Tucker decom-
position (NTD), which gives

min
∥∥PΩ(F − G ×1 A

(1) ×2 A
(2)×3 · · · ×d A(d))

∥∥2

F

s.t. G ∈ Rr1×r2···×rd , G ≥ 0,
A(i) ∈ Rni×ri , A(i) ≥ 0, i = 1, 2, . . . , d,

where F ∈ Rn1×n2×···×nd is the observed sparse tensor,
Ω ⊂ [n1] × [n2] × · · · × [nd] is the index set of the
known data in F , PΩ(X ) keeps the data of X in Ω and
sets the rest ones to zero. The core tensor G and factor
matrices A(i), i = 1, 2, . . . , d are nonnegative, here each
ri, i = 1, 2, . . . , d is a pre-specified integer. In order to solve
the problem, we transform it to the equivalent problem:

min
∥∥M−G ×1 A

(1) ×2 A
(2)×3 · · · ×d A(d)

∥∥2

F

s.t. PΩ(M) = PΩ(F)
G ∈ Rr1×r2···×rd , G ≥ 0,
A(i) ∈ Rni×ri , A(i) ≥ 0, i = 1, 2, . . . , d.

where M is a tensor with the same dimension as F . We
may apply BCD method, i.e., alternatively update blocks
G, A(i), i = 1, 2, . . . , d and M. Specifically, we update M
by the following rule:

M = PΩ(F) + PΩc(G ×1 A
(1) ×2 A

(2)×3 · · · ×d A(d)),

where Ωc is the complement of Ω. The updating rule guaran-
tees the constraint PΩ(M) = PΩ(F) that has been satisfied
in the whole iterative process.

IV. NONNEGATIVE TENSOR COMPLETION PROBLEM
BASED ON NTD WITH UNSPECIFIED CORE TENSOR
SIZE
Xu and Yin [19] discussed the use of the BCD algorithm
to solve the nonnegative tensor completion problem, but the
core tensor size is given in advanced in their paper. Hence,
we generalize the tensor completion model in this section.
In fact, we propose a new model for nonnegative tensor
completion via NTD without pre-specifying the size of the
core tensor. The dimension of each mode for the core is no

longer a constant, it becomes a variable that also needs to be
optimized, which is the speciality of our new model. Several
techniques, including BCD method and penalty method, are
proposed to solve the new model as well.

A. THE PROBLEM FORMULATION
Given a dth order nonnegative tensor F ∈ Rn1×n2···×nd ,
we hope to use a low rank nonnegative core tensor G ∈
Rr1×r2···×rd and d nonnegative matrices A(i) to represent
F , 1 ≤ ri ≤ ni, i = 1, 2, . . . , d. Our work is going to
find the best approximation of F , where all the i-rank of the
core tensor ri, i = 1, 2, . . . , d are all variables that need to
be optimized. Let c be a given constant integer number. We
force that

∑d
i=1 ri = c to prevent ri from being too large

in general. Hence, we would like to consider the nonnegative
tensor completion problem based on a low rank NTD, the
new optimization problem is:

min 1
2

∥∥M−G ×1 A
(1) ×2 A

(2)×3 · · · ×d A(d)
∥∥2

F

s.t. PΩ(M) = PΩ(F),
G ∈ Rr1×r2···×rd , G ≥ 0,
A(i) ∈ Rni×ri , A(i) ≥ 0, i = 1, 2, . . . , d,
ri ∈ Z, 1 ≤ ri ≤ ni, i = 1, 2, . . . , d,∑d
i=1 ri = c.

Because the second and third constraints contain both block
variables G, A(i) and rank variables ri, the problem is dif-
ficult to solve directly. In order to separate these variable
constraints, we adopt the similar separating technique that
developed in [25] by adding d new block variables T (i) ∈
Rmi×mi , where they used it to deal with a specific low-rank
Tucker decomposition problem with orthogonal constraints.
That is, we enlarge the column dimension of block A(i) from
ri to mi, and then multiply diagonal matrices T (i) whose
diagonal element is 0 or 1 to select only ri columns, where

mi = min{ni, c}, i = 1, 2, . . . , d,

T (i) = diag (t(i)), t(i) ∈ {0, 1}mi ,

and
mi∑
j=1

t
(i)
j = ri for i = 1, 2, . . . , d.

That is, if T (i)
j,j = 1, we select the j-th column in A(i),

otherwise, T (i)
j,j = 0 indicates that the column is not selected.

After the block variables are added, the objective function
becomes:

(NT ) min 1
2

∥∥M−G ×1 (A(1)T (1))×2 (A(2)T (2))×3

· · · ×d (A(d)T (d))
∥∥2

F

s.t. PΩ(M) = PΩ(F),
G ∈ Rm1×m2···×md , G ≥ 0,
A(i) ∈ Rni×mi , A(i) ≥ 0, i = 1, 2, . . . , d,
t(i) ∈ {0, 1}mi ,∑mi
j=1 t

(i)
j ≥ 1,∑d

i=1

∑mi
j=1 t

(i)
j = c.
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B. THE PENALTY METHOD
To solve the optimization problem (NT ) using the BCD al-
gorithm, we put the undivided constraint

∑d
i=1

∑mi
j=1 t

(i)
j =

c to the objective function, resulting in a penalty function:

p(λ,M,G, A(1), . . . , A(d), T (1), . . . , T (d))

= 1
2

∥∥M−G ×1 (A(1)T (1))×2 (A(2)T (2))×3 . . .

×d(A(d)T (d))
∥∥2

F
+ λ

(∑d
i=1

∑mi
j=1 t

(i)
j − c

)2

.

where λ > 0 is the penalty parameter. Thus, the penalty
model becomes

(PM) min 1
2

∥∥M−G ×1 (A(1)T (1))×2 (A(2)T (2))

×3 · · · ×d (A(d)T (d))
∥∥2

F

+λ
(∑d

i=1

∑mi
j=1 t

(i)
j − c

)2

s.t. PΩ(M) = PΩ(F),
G ∈ Rm1×m2···×md , G ≥ 0,
A(i) ∈ Rni×mi , A(i) ≥ 0, i = 1, 2, . . . , d,
t(i) ∈ {0, 1}mi ,∑mi
j=1 t

(i)
j ≥ 1.

The BCD method is called for solving this optimization
problem since the block variables are separated now. Let us
discuss how to solve the subproblems in implementing the
BCD method with prox-linear updates [19] that presented in
Algorithm 1.

1) Updating factor matrices
In this part, we wish to optimize (A(i), T (i)) while other
block variables (A(j), T (j)), j = 1, 2, · · · , i−1, i+1, · · · , d
and the tensors M and G are fixed. Consider the block
(A(i), T (i)) as a whole and let Z(i) = A(i)T (i), we have

h(Z(i)) = 1
2

∥∥M−G ×1 (A(1)T (1))×2 (A(2)T (2))×3

· · · ×d (A(d)T (d))
∥∥2

F

= 1
2

∥∥G ×1 Z
(1) ×2 Z

(2)×3 · · · ×d Z(d) −M
∥∥2

F
,

then its gradient is computed as

∇Z(i)h =
(
G ×1 Z

(1) ×2 Z
(2)×3 · · · ×d Z(d) −M

)
(i)((

G ×1 Z
(1) · · · ×i−1 Z

(i−1) ×i+1 Z
(i+1)

· · · ×d Z(d)
)

(i)

)T
=
(
Z(i)G(i)

(
Z(d) ⊗ · · · ⊗ Z(i+1) ⊗ Z(i−1)

⊗ · · · ⊗ Z(1)
)T −M(i)

)(
G(i)

(
Z(d) ⊗ · · · ⊗ Z(i+1) ⊗ Z(i−1)

⊗ · · · ⊗ Z(1)
)T)T

.

Let

Bk−1
i = Gk−1

(i)

(
Z

(d)
k−1 ⊗ · · · ⊗ Z

(i+1)
k−1 ⊗ Z

(i−1)
k−1

⊗ · · · ⊗ Z(1)
k−1

)T
.

Therefore, we take

Lk−1
i = ‖Bk−1

i (Bk−1
i )T ‖2,

ωk−1
i = min

(
ω̂k−1, δω

√
Lk−2
i

Lk−1
i

)
,

where δω < 1 is a pre-selected parameter and ω̂k−1 =
tk−1−1
tk

with t0 = 1 and tk = 1
2

(
1 +

√
1 + 4t2k−1

)
. In

addition, let Ẑ(i)
k−1 = Z

(i)
k−1 + ωk−1

i

(
Z

(i)
k−1 − Z

(i)
k−2

)
, and

Ĥk−1
i =

(
Ẑ

(i)
k−1B

k−1
i −M(i)

) (
Bk−1
i

)T
be the gradient.

Then we use the prox-linear iterative rules to derive the
update:

Z
(i)
k = arg min

Z(i)≥0

〈
Ĥk−1
i , Z(i) − Ẑ(i)

k−1

〉
+
Lk−1
i

2

∥∥∥Z(i) − Ẑ(i)
k−1

∥∥∥2

F
,

which can be written in the closed form

Z
(i)
k = max

(
0, Ẑ

(i)
k−1 − Ĥ

k−1
i /Lk−1

i

)
. (2)

At the end of iteration k, we check whether h(Zk) ≥
h(Zk−1). If so, we re-update Z(i)

k by Eq. (2) with Ẑ(i)
k−1 =

Z
(i)
k−1, for i = 1, . . . , d.
By the above procedures, we can find the optimal Z(i), i =

1, 2, · · · , d, which is nonnegative. Since the optimization of
A(i) is irrelevant to the penalty term of function p and T (i) is
a diagonal matrix whose element is 0 or 1, the columns of the
optimal A(i) is selected from that of Z(i), e.g., if the element
(2, 2) of matrix T (1) is 1, the 2nd column of A(1) is equal to
that of Z(1), otherwise, it is a zero column. More specifically,
we need the following lemma to guide us to find the optimal
A(i) and T (i), which can be easily proved.

Lemma 1 Suppose matrix U = (u1, u2, · · · , um) ∈
Rn×m, where ui ∈ Rn, and the number of its columns is
equal to the dimension of tensor F in mode k. Let matrix
Qi be the same size as U , for i = 1, 2, · · · ,m. For each
i ∈ {1, 2, · · · ,m}, the i-th column of Qi is ui, and the rest
of Qi’s columns are all zeros. Then, the k-mode product of
tensor F and U has the following property:

F ×k U = F ×k Q1 + F ×k Q2 + · · ·+ F ×k Qm.

Now we are ready to find the optimal A(i) and T (i) after
obtaining Z(i) for a given i. Without loss of generality, we
present the case that i = 1. The target optimization problem
is

(AT 1) min 1
2

∥∥(A(1)T (1))W1 −M(1)

∥∥2

F

+λ
(∑m1

j=1 t
(1)
j + c1

)2

s.t. A(1) ∈ Rn1×m1 , A(1) ≥ 0,
t(1) ∈ {0, 1}m1 ,∑m1

j=1 t
(1)
j ≥ 1.
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where W1 = G(1)

(
A(d)T (d) ⊗ · · · ⊗ A(2)T (2)

)T
and c1 =∑d

i=2

∑mi
j=1 t

(i)
j − c. First, we select only one single column

of Z(i), that is, the 1st, the 2nd, . . . , or the m1-th column
of Z(1), denoted as zj , j = 1, 2, · · · ,m1. Therefore, we can
construct new matrices

Ā
(1)
j = (0, · · · , 0, zj , 0, · · · , 0) ∈ Rn1×m1 ,

for j = 1, 2, · · · ,m1, according to Lemma 1 and calculate
the corresponding value of function h respectively, denoted
as h(1)

j , j = 1, 2, · · · ,m1. Then, we sort these values in
ascending order, the smaller the value is, the higher priority
we choose. The sum of all Ā(1)

j will results in A(1). Further-
more, if the j-th column of Ā(1) (or A(1)) is non-zero, t(1)

j

is equal to 1. Next, we need to determine the total number of
columns that is chosen in Z(1), i.e., the value of

∑m1

j=1 t
(1)
j .

This is a combinatorial problem, but it can be solved in
polynomial time. For the optimization problem (AT 1), all the
possible values for

∑m1

j=1 t
(1)
j are {1, 2, . . . ,m1}, thus, we

only need to try m1 different values for
∑m1

j=1 t
(1)
j and pick

the best solution. For example, suppose the optimal value∑m1

j=1 t
(1)
j = m∗, then we pick the first m∗ smaller values in

h
(1)
j (j = 1, 2, · · · ,m1), and find the corresponding optimal
A(1) and also T (1).

2) Updating tensors
For problem (PM), we fix block variables (A(j), T (j)), j =
1, 2, · · · , d and the tensorM, and then compute the gradient

∇G p =
(
G ×1

(
A(1)T (1)

)
×2

(
A(2)T (2)

)
×3 . . .

×d(A(d)T (d))−M
)
×1 (A(1)T (1))T

×2(A(2)T (2))T×3 · · · ×d (A(d)T (d))T .

Let

Bk−1 =
(
A

(d)
k−1T

(d)
k−1

)
⊗ · · · ⊗

(
A

(2)
k−1T

(2)
k−1

)
⊗
(
A

(1)
k−1T

(1)
k−1

)
,

Sk−1 = ‖(Bk−1)TBk−1‖2,

Ĝk−1 = Gk−1 + ωk−1 (Gk−1 − Gk−2) ,

where parameter ωk−1 is updated similarly as that in Section
IV-B1. Due to the advantages of the prox-linear iterative rule,
we use it again to update the core tensor:

Gk = max
(

0, Ĝk−1 − (∇G p)k−1/Sk−1

)
. (3)

At the end of iteration k, we check whether p(Gk) ≥
p(Gk−1). If so, we re-update Gk by Eq. (3) with Ĝk−1 =
Gk−1. Remark that we compute (Bk−1)TBk−1 by the fol-
lowing way in order to compute Sk−1 more efficiently:

(Bk−1)TBk−1 =
(
A

(d)
k−1T

(d)
k−1)

)T (
A

(d)
k−1T

(d)
k−1

)
⊗

· · · ⊗
(
A

(1)
k−1T

(1)
k−1)

)T (
A

(1)
k−1T

(1)
k−1

)
.

Finally, we updateM when having Gk and A(i)
k , T

(i)
k , i =

1, 2, . . . , d as follows:

Mk = PΩ(F) + PΩc(Gk ×1 (A
(1)
k T

(1)
k )

×2 (A
(2)
k T

(2)
k )×3 · · · ×d (A

(d)
k T

(d)
k )).

(4)

C. OUR ALGORITHM AND CONVERGENCE RESULT

Algorithm 2: BCD method with prox-linear updates for solv-
ing (PM)
Input: Nonnegative tensor F with missing values, index set of the known

data Ω, integer c ≥ d, and parameter α;

Output: Nonngetive tensorM.

1: Initialization: positive parameter λ0, initial values (G−1, A
(1)
−1, A

(2)
−1,

. . . , A
(d)
−1 , T

(1)
−1 , T

(2)
−1 , . . . , T

(d)
−1 ) = (G0, A(1)

0 , A
(2)
0 , . . . , A

(d)
0 , T

(1)
0 ,

T
(2)
0 , . . . , T

(d)
0 ).

2: for k = 1, 2, . . . do
3: Update Gk according to (3).

4: if p(Gk) ≥ p(Gk−1) then
5: Reupdate Gk according to (3) with Ĝk−1 = Gk−1.

6: end if
7: for i = 1, 2, . . . , d do
8: Update Z(i)

k according to (2).

9: if h(Zk) ≥ h(Zk−1) then
10: Reupdate Z(i)

k according to (2) with Ẑ(i)
k−1 = Z

(i)
k−1.

11: end if
12: Extract A(i)

k and T (i)
k from Z

(i)
k .

13: Z
(i)
k = A

(i)
k T

(i)
k .

14: end for
15: UpdateMk according to (4).

16: if stopping criterion is satisfied then
17: ReturnMk.

18: end if
19: λ := αλ.

20: end for

We solve the nonnegative tensor completion problem
(NT ) via the penalty method. According to the structure of
the penalty model (PM), we apply the BCD method with
prox-linear updating rule. Algorithm 2 summarizes the pro-
cedures for solving problem (PM). We alternatively update
the core tensor (lines 3-6), the factor matrices (lines 7-14),
and tensorM (line 15) until a stopping criterion is satisfied.

We have the following convergence result of Algorithm 2,
which can be verified directly from Theorem 3.1 of [19].

Theorem 1 Let {Gk, A(i)
k , T

(i)
k ,Mk}, i = 1, 2, . . . , d

be the sequence generated by Algorithm 2. Suppose that
{Gk}, {A(i)

k }, {T
(i)
k } are bounded and there exists a posi-

tive constant ξ such that ξ ≤ Lki for all k and i, and
a positive constant η such that η ≤ Sk for all k. Then
{Gk, A(i)

k , T
(i)
k ,Mk}, i = 1, 2, . . . , d converges to a critical

point.
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Fig. 1: Comparisons in terms of RSE for the ORL database of faces when missing ratio varies.

Fig. 2: Comparisons in terms of PSNR for the ORL database of faces when missing ratio varies.

Fig. 3: Completion results of the ORL database. Columns from left to right is the original images, 50% corrupted images and
recovered images by our algorithm, LMaFit, NCPC and SiLRTC, respectively.
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V. EXPERIMENTAL RESULTS
In this section, we use three different types of image data
to test our algorithm and to demonstrate its effectiveness
and efficiency, since the corresponding tensor is always non-
negative that fits our work. All the numerical computations
are conducted in an Intel Core CPU 3.30GHz 8GB RAM
computer. The supporting software is MATLAB R2016a as a
platform. We use MATLAB Tensor Toolbox 2.6 [28] when-
ever tensor operations are called. The proposed algorithm is
compared with the three state-of-the-art algorithms, i.e., low
rank matrix fitting (LMaFit) algorithm [29], nonnegative CP
decomposition from partial observations (NCPC) algorith-
m [19] and the simple low rank tensor completion (SiLRTC)
algorithm [13].

In implementing all the four algorithms, the termination
precision is set to be 10−5, and the maximum iteration is set
to be 500. In addition, we set Zfull = 1, est rank = 2 and max
rank = 50 and r (rank estimate)= 20 for LMaFit, esr = 50
for NCPC, and the weights to control the rank in each mode
of the tensor are set to be equal (i.e., αi = 1

3 , i = 1, 2, 3)
for SiLRTC. The other parameters of these three algorithms
are set as default values. For our algorithm, the larger the
constant value c, the better the completion effect in general.
Since we consider nonnegative tensor completion via a low
rank NTD, we could not set the value c too large. Therefore,
we set c = 100 in our experiments. Let α = 2, and we
set the initial λ to be λ0 = 4‖M‖F . The initial values of
G−1 and A

(1)
−1, A

(2)
−1, A

(3)
−1 are the maximum value between

random generated values drawn from the standard normal
distribution and 0. The initial values of T (1)

−1 , T
(2)
−1 , T

(3)
−1 are

all zero, except that their (1,1)-entry are 1.
For the image data, we randomly remove some pixels

of each original image whose entries follow from uniform
distribution and we use the relative square error (RSE) and
the peak signal-to-noise ratio (PSNR) to measure the quality
of the algorithms, which are defined as follows:

RSE =
‖M̂ −M‖F
‖M‖F

, PSNR = 10 log(
2552

MSE
)

whereM∈ RI×J×K is the observed nonnegative tensor and
M̂ is the completion result of the algorithms, and

MSE =
1

IJK

I∑
i=1

J∑
j=1

K∑
k=1

(Mijk − M̂ijk)2.

Each algorithm is repeated three times, taking the average
of RSE and PSNR. In general, the smaller the RSE and
the larger the PSNR, the better the effect of the image
completion.

A. THE ORL DATABASE OF FACES
We use the ORL database of faces [30] in AT&T Laboratories
Cambridge. In this database, there are 40 different subjects,
each of which contains 10 different grayscale images, each
92×112 pixels in size. We use one of these subjects to form
a 92×112×10 sized tensor.

We show some comparison results in terms of RSE and
PSNR for this database by using the four algorithms when
missing ratio varies from 0.1 to 0.9 in Fig. 1 and Fig. 2,
respectively. It can be seen from these two figures that when
the missing ratio is greater than or equal to 0.2, the pro-
posed algorithm has the smallest RSE and the largest PSNR
among the four algorithms, which means our algorithm has
the best completion performance. We here focus on the
recovered quality of each algorithm, hence, we do not report
the computational time of them although our method costs
more in general. It is worth mentioning that most of the
computational effort of our proposed algorithm is to find
a suitable combination of Tucker rank (r1, r2, r3), which
means that our rank selecting strategy is better than that
of other algorithms. This computational effort in selecting
a better rank is worthwhile. Fig. 3 further certificates this
phenomenon. We can vividly observe that our algorithm is
able to recover the image with 50% missing information and
has the best completion effect among the four algorithms.

B. MCGILL CALIBRATED COLOUR IMAGE DATABASE
The second image dataset is from McGill calibrated colour
image database [31]. The size of each image is 768×576.
In order to save computational time, we resize the image to
192×144 pixels, i.e., a 192×144×3 sized tensor is formed,
and a total of six color images (namely Rabbit, Leaves,
FallenLeaves, NetTiger, Grass and Flowers) are used.

Fig. 4 and Fig. 5 show the comparison results in terms of
RSE and PSNR for the six color images when missing ratio
varies from 0.1 to 0.9. We can see that the performance of
our algorithm, NCPC and SiLRTC are all better than that of
LMaFit when missing value is larger than 0.3, and the former
three ones has similar performance when missing ratio is in
[0.3, 0.7]. However, when the missing ratio is greater than or
equal to 0.8, the proposed algorithm has the smallest RSE and
the largest PSNR among the four algorithms, meaning the
best completion performance that our algorithm has. Fig. 6
shows the completion results of Rabbit, Leaves and Flowers
when missing ratio is 0.5. The recovery effect of all the four
algorithms is satisfactory, and SiLRTC performs worse than
the other three ones.

C. COLUMBIA UNIVERSITY IMAGE LIBRARY
The last test is on Columbia university image library (COIL-
20) [32]. Each object contains 72 grayscale images with a
size of 128×128 pixels. For each object, we select the first 10
images and form a tensor of 128×128×10 size. We choose a
total of six objects.

Fig. 7 and Fig. 8 show the comparison results in terms of
RSE and PSNR for the six objects when missing ratio varies
from 0.1 to 0.9. We observe that the proposed algorithm
has the smallest RSE and the largest PSNR among the four
algorithms when the missing ratio is less than or equal to 0.5.
Fig. 9 shows the completion results of four grayscale images
when missing ratio is 0.3. It can be seen that our algorithm
clearly has the best completion effect.
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Fig. 4: Comparisons in terms of RSE for the colour image database when missing ratio varies.

Fig. 5: Comparisons in terms of PSNR for the colour image database when missing ratio varies.

Fig. 6: Completion results of the colour image database. Columns from left to right is the original images, 50% corrupted
images and recovered images by our algorithm, LMaFit, NCPC and SiLRTC, respectively.
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Fig. 7: Comparisons in terms of RSE for COIL-20 database when missing ratio varies.

Fig. 8: Comparisons in terms of PSNR for COIL-20 database when missing ratio varies.

Fig. 9: Completion results of COIL-20 database. Columns from left to right is the original images, 30% corrupted images and
recovered images by our algorithm, LMaFit, NCPC and SiLRTC, respectively.
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VI. CONCLUSION
This paper considers the problem of nonnegative tensor com-
pletion via low rank Tucker decomposition in which the core
tensor size can be adjusted by itself, which deals with an
important practical issue for real applications. Traditionally,
the core tensor size is given in advance. We construct a new
model for solving this particular problem. The approach that
we present is based on the penalty method and block coordi-
nate descent method with prox-linear updates for regularized
multiconvex optimization. We present the convergence of our
proposed algorithm. The numerical results on the three image
datasets show that our algorithm is competitive compared to
other existing algorithms even though the data is very sparse,
e.g., the missing ratio is up to 90%.
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