33 research outputs found

    Anomalous Relativistic Emission from Self-Modulated Plasma Mirrors

    Full text link
    The interaction of relativistically intense laser pulse with a plasma mirror produces harmonics of the incident frequency co-propagating in the direction of specular reflection due to the plasma mirror surface oscillating with velocity close to the speed of light. This mechanism has shown its potential for realization of a bright source of extreme ultraviolet radiation and attosecond pulses. Here, we reveal an unexpected transition of this well-known process into a new regime of efficient extreme ultraviolet radiation generation. A novel mechanism of relativistic emission of radiation from plasma mirrors is identified with an extraordinary property that instead of following specular reflection, the radiation is emitted in the direction along the plasma mirror surface. With analytical calculations and numerical particle-in-cell simulations, we show that this radiation originates from laser-driven non-linear oscillations of relativistic electron nanobunches that are generated by a plasma surface instability and propagate along the plasma mirror surface.Comment: 6 pages, 3 figure

    Bright coherent attosecond X-ray pulses from beam-driven relativistic mirrors

    Full text link
    Bright ultrashort X-ray pulses allow scientists to observe ultrafast motion of atoms and molecules. Coherent light sources, such as the X-ray free electron laser (XFEL), enable remarkable discoveries in cell biology, protein crystallography, chemistry or materials science. However, in contrast to optical lasers, lack of X-ray mirrors demands XFELs to amplify radiation over a single pass, requiring tens or hundreds of meters long undulators to produce bright femtosecond X-ray pulses. Here, we propose a new ultrafast coherent light source based on laser reflection from a relativistic mirror driven by a relativistic charged particle beam in micrometer-scale plasma. We show that reflection of millijoule-level laser pulses from such mirrors can produce bright, coherent and bandwidth-tunable attosecond X-ray pulses with peak intensity and spectral brightness comparable to XFELs. In addition, we find that beam-driven relativistic mirrors are highly robust, with laser-induced damage threshold exceeding solid-state components by at least two orders of magnitude. Our results promise a new way for bright coherent attosecond X-ray pulse generation, suitable for unique applications in fundamental physics, biology and chemistry

    Chocs radiatifs : expérience, modélisation et liens à l’astrophysique

    No full text
    Les chocs radiatifs sont des chocs très violents qui sont caractérisés par des températures très élevées. Dans ce type de structure, une grande partie de l’énergie est convertie en rayonnement. Ces chocs sont présents dans de nombreux plasmas astrophysiques, notamment dans le cadre des jets et de l’accrétion stellaires, des restes de supernova etc. Ils peuvent être désormais générés sur terre en utilisant des lasers de grande puissance ce qui permet leur étude à l’interface entre l’astrophysique et la physique des plasmas.Cette thèse présente et discute les résultats d’une expérience réalisées sur l’installation Prague Asterix Laser System. Le choc est généré en focalisant le laser Infrarouge sur une cible de quelques millimètres de long, remplie de xénon à basse pression. Le choc ainsi généré se propage dans le gaz à une vitesse élevée, permettant d’atteindre le régime des chocs dom- inés par le flux radiatif. Nous avons utilisé différents diagnostics pour caractériser le choc, notamment une radiographie éclair, à l’aide d’un laser (Zinc) à 21.2 nm, capable de pénétrer les parties denses du plasma. Un autre important diagnostique consiste à analyser l’émission propre du plasma à l’aide d’une diode rapide.Les résultats expérimentaux montrent pour la première fois, et sans ambiguïté, une structure de choc complète, comprenant le post-choc et le précurseur. Nous avons aussi réalisé différentes mesures de la vitesse des chocs. Les résultats ont été comparés à ceux de simulations numériques, montrant un bon accord avec ces dernières.Radiative shocks are strong shocks which are characterized by a plasma at high temperatures emitting an important fraction of its energy as radiation. Radiative shocks are found in many astrophysical systems, including stellar accretion shocks, supernovae remnants, jet driven shocks, etc. Recently, radiative shocks have also been produced experimentally using high energy lasers. Thus opening the way to laboratory astrophysics studies of these universal phenomena.In this thesis we discuss the results of an experiment performed on the Prague Asterix Laser System facility. Shocks are generated by focusing the PALS Infrared laser beam on millimetre-scale targets filled with xenon gas at low pressure. The shock that is generated then propagates in the gas with a sufficiently high velocity such that the shock is in a radiative flux dominated regime. We used different diagnostics to characterize these shocks. The two main ones include a radiography of the whole shock structure using sub-nanosecond Zn X-ray laser at 21.2 nm, which is able to penetrate the dense post-shock layer, and a space-and-time resolved plasma self-emission using high speed diodes.The experimental results show, for the first time, an unambiguous shock structure which includes both the post-shock and the precursor, and we also obtained multiple shock velocity measurements from the different diagnostics. The experimental results are compared to simulations, and show good agreement with the numerical results

    Laboratory experiments of Radiative Shocks, in the context of stellar accretion

    No full text
    International audienceRadiative shocks are high Mach number shocks with a strong coupling between radiation and hydrodynamics. These shocks occour in astrophysical system and in high-energy density laboratory experiments. High-energy lasers can be used to simulate astrophysical phenomena in the Laboratory. PALS Laser facility provides irradiance of 10Âč4 W/cmÂČ, lasting less than 1 ns, and allows to produce radiative shocks in high atomic gas medium at low pressure. The radiative energy is converted into mechanical energy, generating the shock in the gas. The system is optimized for reaching conditions where the shock is radiative, i.e. it presents a radiative precursor. The experimental results of two new diagnostics: first a XUV instantaneous imaging at 21.2 mm, and second, a time and space resolved plasma self-emission using fast diodes will be highlighted. communication orale Atelier S08 Actes Ă  paraĂźtre 2013 sur le site de la SF2

    X-ray laser imaging of a radiative shock

    No full text
    International audiencecommunication orale actes Ă  paraĂźtre sur http://2013.sf2a.eu

    Generation of intense magnetic wakes by relativistic laser pulses in plasma

    No full text
    Abstract The emergence of petawatt lasers focused to relativistic intensities enables all-optical laboratory generation of intense magnetic fields in plasmas, which are of great interest due to their ubiquity in astrophysical phenomena. In this work, we study generation of spatially extended and long-lived intense magnetic fields. We show that such magnetic fields, scaling up to the gigagauss range, can be generated by interaction of petawatt laser pulses with relativistically underdense plasma. With three-dimensional particle-in-cell simulations we investigate generation of magnetic fields with strengths up to 101010^{10} 10 10 G and perform a large multi-parametric study of magnetic field in dependence on dimensionless laser amplitude a0a_{0} a 0 and normalized plasma density ne/ncn_{e}/n_{c} n e / n c . The numerical results yield scaling laws that closely follow derived analytical result B∝a0ne/ncB \propto \sqrt{a_{0}n_{e}/n_{c}} B ∝ a 0 n e / n c , and further show a close match with previous experimental works. Furthermore, we show in three-dimensional geometry that the decay of the magnetic wake is governed by current filament bending instability, which develops similarly to von Kármán vortex street in its nonlinear stage

    Lanceur électromagnétique de chocs forts pour l'astrophysique de laboratoire : principe et premiers résultats

    No full text
    International audienceParmi les chocs forts prĂ©sents en astrophysique, comme les chocs daccrĂ©tion lors de la formation des Ă©toiles jeunes, les chocs radiatifs sont caractĂ©risĂ©s par un pic de tempĂ©rature localisĂ© et une forte Ă©mission de rayonnement capable de structurer le choc. Par exemple, lionisation par ce rayonnement chauffe la matiĂšre en amont et modifie la propagation du choc (phĂ©nomĂšne prĂ©curseur). Lastrophysique de laboratoire Ă©tudie ces chocs depuis une dĂ©cennie en gĂ©nĂ©rant des chocs quasi plans par impact laser Ă  haut flux. RĂ©cemment les auteurs ont ainsi pu mesurer des vitesses de 50 km/s dans le xĂ©non dense. Il est apparu utile de crĂ©er des chocs forts par un moyen plus commode Ă  mettre en uvre au laboratoire, permettant dĂ©tudier une large gamme de chocs, de multiplier les expĂ©riences et de dĂ©velopper des diagnostics avec des contraintes dencombrement rĂ©duites. Or, des chocs daccrĂ©tion en gaz peu denses ont Ă©tĂ© documentĂ©s dans les annĂ©es 70 dans les canons Ă  plasma coaxiaux. Dans ces dispositifs, la pression magnĂ©tique gĂ©nĂ©rĂ©e par un courant fort (100 kA et plus) accĂ©lĂšre une lame de plasma, ce qui constitue le lanceur du dispositif dit plasma focus. La puissance instantanĂ©e dun tel gĂ©nĂ©rateur ultra compact dĂ©passe alors couramment les 500MWe. AprĂšs avoir obtenu dempĂȘcher lĂ©tape de focalisation du plasma, il a Ă©tĂ© possible de montrer quun choc quasi plan est crĂ©Ă© et se dĂ©place Ă  une vitesse Ă©levĂ©e dans un tube dont les dimensions sont dun ordre de grandeur supĂ©rieures Ă  celles dun tube pour choc induit par laser. On prĂ©sentera le mĂ©canisme de formation et daccĂ©lĂ©ration du plasma puis un modĂšle paramĂ©trique rĂ©gissant la vitesse terminale. Des exemples de mesures de la vitesse (de 5 Ă  20 km/s) et du profil du choc seront Ă©galement prĂ©sentĂ©s. Ce travail est soutenu par le DIM ACAV 2012 et par lOBSPM

    Multi-Lane Mirror for Broadband Applications of the Betatron X-ray Source

    No full text
    A new generation of small-scale ultrafast X-ray sources is rapidly emerging. Laser-driven betatron radiation represents an important class of such ultrafast X-ray sources. With the sources driving towards maturity, many important applications in material and biological sciences are expected to be carried out. While the last decade mainly focused on the optimization of the source properties, the development of such sources into user-oriented beamlines in order to explore the potential applications has recently taken off and is expected to grow rapidly. An important aspect in the realization of such beamlines will be the implementation of proper X-ray optics. Here, we present the design of a multi-lane X-ray mirror as a versatile focusing device covering a wide spectral range of betatron X-rays. The expected photon flux in the focal plane of such optics was also estimated through geometrical simulations
    corecore