30 research outputs found

    Selective lesion of the hippocampus increases the differentiation of immature neurons in the monkey amygdala

    Get PDF
    A large population of immature neurons is present in the ventromedial portion of the adult primate amygdala, a region that receives substantial direct projections from the hippocampal formation. Here, we show the effects of neonatal (n = 8) and adult (n = 6) hippocampal lesions on the populations of mature and immature neurons in the paralaminar, lateral, and basal nuclei of the adult monkey amygdala. Compared with unoperated controls (n = 7), the number of mature neurons was about 70% higher in the paralaminar nucleus of neonate- and adult-lesioned monkeys, and 40% higher in the lateral and basal nuclei of neonate-lesioned monkeys. The number of immature neurons in the paralaminar nucleus was 40% higher in neonate-lesioned monkeys and 30% lower in adult-lesioned monkeys. Similar changes in neuron numbers were also found in two monkeys with nonexperimental, selective, bilateral hippocampal damage. These changes in neuron numbers following hippocampal lesions appear to reflect the differentiation of immature neurons present in the paralaminar nucleus. After adult lesions, the differentiation of immature neurons was essentially restricted to the paralaminar nucleus and was associated with a decrease in the population of immature neurons. In contrast, after neonatal lesions, the differentiation of immature neurons involved the paralaminar, lateral, and basal nuclei. It was associated with an increase in the population of immature neurons in the paralaminar nucleus. Such lesion-induced neuronal plasticity sheds new light on potential mechanisms that may facilitate functional recovery following focal brain injury

    Lasalle's Invariance Theorem for Nonsmooth Lagrangian Dynamical Systems

    Get PDF
    International audienceA key condition for the statement of Lasalle's invariance theorem is the continuity of the trajectories of the dynamical systems with respect to initial conditions. Systems with discontinuous flows generally don't present such a continuity, but in the particular case of nonsmooth Lagrangian dynamical systems we will see that in fact this continuity property holds in most cases. We will then be able to propose a a LaSalle's invariance theorem for nonsmooth dynamical systems satisfying this property through the use of general time-invariant flows.orem for nonsmooth dynamical systems still needs to be stated, so we propose here to extend this theorem through the framework of nonsmooth dynamical systems

    Stereological analysis of the rat and monkey amygdala

    Get PDF
    The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings

    Stereological analysis of the rat and monkey amygdala

    Get PDF
    The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings

    Stereological analysis of the rat and monkey amygdala

    Get PDF
    The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings

    Stereological analysis of the rat and monkey amygdala

    Get PDF
    The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings

    Stereological analysis of the rat and monkey amygdala

    Get PDF
    The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings

    Postnatal development of the entorhinal cortex: a stereological study in macaque monkeys

    Get PDF
    The entorhinal cortex is the main gateway for interactions between the neocortex and the hippocampus. Distinct regions, layers, and cells of the hippocampal formation exhibit different profiles of structural and molecular maturation during postnatal development. Here, we provide estimates of neuron number, neuronal soma size, and volume of the different layers and subdivisions of the monkey entorhinal cortex (Eo, Er, Elr, Ei, Elc, Ec, Ecl) during postnatal development. We found different developmental changes in neuronal soma size and volume of distinct layers in different subdivisions, but no changes in neuron number. Layers I and II developed early in most subdivisions. Layer III exhibited early maturation in Ec and Ecl, a two‐ step/early maturation in Ei and a late maturation in Er. Layers V and VI exhibited an early maturation in Ec and Ecl, a two‐step and early maturation in Ei, and a late maturation in Er. Neuronal soma size increased transiently at 6 months of age and decreased thereafter to reach adult size, except in Layer II of Ei, and Layers II and III of Ec and Ecl. These findings support the theory that different hippocampal circuits exhibit distinct developmental profiles, which may subserve the emergence of different hippocampus‐dependent memory processes. We discuss how the early maturation of the caudal entorhinal cortex may contribute to path integration and basic allocentric spatial processing, whereas the late maturation of the rostral entorhinal cortex may contribute to the increased precision of allocentric spatial representations and the temporal integration of individual items into episodic memories

    Comment éduquer et accompagner les adolescents et les jeunes adultes dans l’univers médiatique contemporain pour les aider à grandir?

    Get PDF
    L’arrivée d’internet a bouleversé et remodelé le rapport à l’information et les interactions sociales. Les pratiques informationnelles actuelles renouvellent la notion de source, complexifient le rapport à la vérité et renforcent l’expression de l’opinion, parfois au détriment des faits. Dans ce contexte, l’Éducation aux Médias et à l’Information (EMI) apparaît comme un enjeu majeur

    Postnatal development of the amygdala: a stereological study in rats

    Get PDF
    The amygdala is the central component of a functional brain system regulating fear and emotional behaviors. Studies of the ontogeny of fear behaviors reveal the emergence of distinct fear responses at different postnatal ages. Here, we performed a stereological analysis of the rat amygdala to characterize the cellular changes underlying its normal structural development. Distinct amygdala nuclei exhibited different patterns of postnatal development, which were largely similar to those we have previously shown in monkeys. The combined volume of the lateral, basal, and accessory basal nuclei increased by 113% from 1 to 3 weeks of age and by an additional 33% by 7 months of age. The volume of the central nucleus increased only 37% from 1 to 2 weeks of age and 38% from 2 weeks to 7 months. At 1 week of age, the medial nucleus was 77% of the 7-month-old's volume and exhibited a constant, marginal increase until 7 months. Neuron number did not differ in the amygdala from 1 week to 7 months of age. In contrast, astrocyte number decreased from 3 weeks to 2 months of age in the whole amygdala. Oligodendrocyte number increased in all amygdala nuclei from 3 weeks to 7 months of age. Our findings revealed that distinct amygdala nuclei exhibit different developmental profiles and that the rat amygdala is not fully mature for an extended period postnatally. We identified different periods of postnatal development of distinct amygdala nuclei and cellular components, which are concomitant with the ontogeny of different fear and emotional behaviors
    corecore