4,157 research outputs found

    The Objectivity of Ordinary Life

    Get PDF
    Metaethics tends to take for granted a bare Democritean world of atoms and the void, and then worry about how the human world that we all know can possibly be related to it or justified in its terms. I draw on Wittgenstein to show how completely upside-down this picture is, and make some moves towards turning it the right way up again. There may be a use for something like the bare-Democritean model in some of the sciences, but the picture has no standing as the basic objective truth about the world; if anything has that standing, it is ordinary life. I conclude with some thoughts about how the notion of bare, “thin” perception of non-evaluative reality feeds a number of philosophical pathologies, such as behaviourism, and show how a “thicker”, more value-laden, understanding of our perceptions of the world can be therapeutic against them

    Black and Minority Ethnic Trainees' Experiences of Physical Education Initial Teacher Training: Report to the Training and Development Agency

    Get PDF

    Analysis of two-player quantum games in an EPR setting using geometric algebra

    Get PDF
    The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR) type setting is investigated using the mathematical formalism of Clifford geometric algebra (GA). In this setting, the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, which is then obtained as proper subset of the corresponding quantum game. As examples, using GA we analyze the games of Prisoners' Dilemma and Stag Hunt when played in the EPR type setting.Comment: 20 pages, no figure, revise

    Quench characteristics of a Cu-Stabilized 2G HTS conductor

    No full text
    The prospect of medium/high field superconducting magnets using 2G HTS tapes is approaching to reality with continued enhancement in the performance of these conductors. Direct measurements of 1d adiabatic quench initiation and propagation of a Cu-stabilized 2G conductor have been carried out with spatial-temporal recording of temperature and voltage following the deposition of various local heat pulses to the conductor at different temperatures between 40K and 64K carrying different transport currents. It was found that the stabilizer-free 2G tape maintains the unique characteristics previously measured in non-stabilized tape of increasing MPZ with transport current and higher quench energy at lower temperatures. The minimum quench energy, minimum propagation zone (MPZ) length are determined as a function of temperature and transport current. The change in MPZ size is investigated with measured temperature dependent E-J characteristics. The results add more detail to help understand the unique characteristics of increasing MPZ with transport current and lower temperatures

    Seasonal temperature acclimatization in a semi-fossorial mammal and the role of burrows as thermal refuges.

    Get PDF
    Small mammals in habitats with strong seasonal variation in the thermal environment often exhibit physiological and behavioral adaptations for coping with thermal extremes and reducing thermoregulatory costs. Burrows are especially important for providing thermal refuge when above-ground temperatures require high regulatory costs (e.g., water or energy) or exceed the physiological tolerances of an organism. Our objective was to explore the role of burrows as thermal refuges for a small endotherm, the pygmy rabbit (Brachylagus idahoensis), during the summer and winter by quantifying energetic costs associated with resting above and below ground. We used indirect calorimetry to determine the relationship between energy expenditure and ambient temperature over a range of temperatures that pygmy rabbits experience in their natural habitat. We also measured the temperature of above- and below-ground rest sites used by pygmy rabbits in eastern Idaho, USA, during summer and winter and estimated the seasonal thermoregulatory costs of resting in the two microsites. Although pygmy rabbits demonstrated seasonal physiological acclimatization, the burrow was an important thermal refuge, especially in winter. Thermoregulatory costs were lower inside the burrow than in above-ground rest sites for more than 50% of the winter season. In contrast, thermal heterogeneity provided by above-ground rest sites during summer reduced the role of burrows as a thermal refuge during all but the hottest periods of the afternoon. Our findings contribute to an understanding of the ecology of small mammals in seasonal environments and demonstrate the importance of burrows as thermal refuge for pygmy rabbits

    N-player quantum games in an EPR setting

    Get PDF
    The NN-player quantum game is analyzed in the context of an Einstein-Podolsky-Rosen (EPR) experiment. In this setting, a player's strategies are not unitary transformations as in alternate quantum game-theoretic frameworks, but a classical choice between two directions along which spin or polarization measurements are made. The players' strategies thus remain identical to their strategies in the mixed-strategy version of the classical game. In the EPR setting the quantum game reduces itself to the corresponding classical game when the shared quantum state reaches zero entanglement. We find the relations for the probability distribution for NN-qubit GHZ and W-type states, subject to general measurement directions, from which the expressions for the mixed Nash equilibrium and the payoffs are determined. Players' payoffs are then defined with linear functions so that common two-player games can be easily extended to the NN-player case and permit analytic expressions for the Nash equilibrium. As a specific example, we solve the Prisoners' Dilemma game for general N≥2 N \ge 2 . We find a new property for the game that for an even number of players the payoffs at the Nash equilibrium are equal, whereas for an odd number of players the cooperating players receive higher payoffs.Comment: 26 pages, 2 figure

    Testing the gravitational theory with short-period stars around our Galactic Center

    Full text link
    Motion of short-period stars orbiting the supermassive black hole in our Galactic Center has been monitored for more than 20 years. These observations are currently offering a new way to test the gravitational theory in an unexplored regime: in a strong gravitational field, around a supermassive black hole. In this proceeding, we present three results: (i) a constraint on a hypothetical fifth force obtained by using 19 years of observations of the two best measured short-period stars S0-2 and S0-38 ; (ii) an upper limit on the secular advance of the argument of the periastron for the star S0-2 ; (iii) a sensitivity analysis showing that the relativistic redshift of S0-2 will be measured after its closest approach to the black hole in 2018.Comment: 4 pages, 2 figures, proceedings of the 52nd Rencontres de Moriond, Gravitation Sessio

    Instrument manual for the retarding ion mass spectrometer on Dynamics Explorer-1

    Get PDF
    The retarding ion mass spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation
    • …
    corecore