278 research outputs found

    Bifurcations in unsteady aerodynamics-implications for testing

    Get PDF
    The various forms of bifurcations that can occur between steady and unsteady aerodynamic flows are reviewed. Examples are provided to illustrate the various ways in which bifurcations may intervene to influence the outcome of dynamics tests involving unsteady aerodynamics. The presence of bifurcation phenomena in such tests must be taken into consideration to ensure the proper interpretation of results, and some recommendations are made to that end

    Transition of the Laminar Boundary Layer on a Delta Wing with 74 degree Sweep in Free Flight at Mach Numbers from 2.8 to 5.3

    Get PDF
    The tests were conducted at Mach numbers from 2.8 to 5.3, with model surface temperatures small compared to boundary-layer recovery temperature. The effects of Mach number, temperature ratio, unit Reynolds number, leading-edge diameter, and angle of attack were investigated in an exploratory fashion. The effect of heat-transfer condition (i.e., wall temperature to total temperature ratio) and Mach number can not be separated explicitly in free-flight tests. However, the data of the present report, as well as those of NACA TN 3473, were found to be more consistent when plotted versus temperature ratio. Decreasing temperature ratio increased the transition Reynolds number. The effect of unit Reynolds number was small as was the effect of leading-edge diameter within the range tested. At small values of angle of attack, transition moved forward on the windward surface and rearward on the leeward surface. This trend was reversed at high angles of attack (6 deg to 18 deg). Possible reasons for this are the reduction of crossflow on the windward side and the influence of the lifting vortices on the leeward surface. When the transition results on the 740 delta wing were compared to data at similar test conditions for an unswept leading edge, the results bore out the results of earlier research at nearly zero heat transfer; namely, sweep causes a large reduction in the transition Reynolds number

    The Stabilizing Effectiveness of Conical Flares on Bodies with Conical Noses

    Get PDF
    An analysis is presented of published results of force tests on 80 cone-cylinder-flare configurations at Mach numbers of 2.18, 2.81, and 4.04. The contributions, excluding interference effects, of the cone-cylinder bodies to the over-all normal force derivatives have been removed by means of the second-order shock-expansion method, and the normal force derivatives at zero angle of attack due to the flares alone are shown. The results from a wide variety of configurations are correlated by plotting ratios of the normal force derivatives of the flares to the normal force derivatives of cones having the same included angle. Comparisons are made of the experimental normal force results with the normal force derivatives obtained by assuming conical flow over the flares and with those obtained by use of the second-order shock-expansion method. The comparisons show that use of the second-order shock-expansion method is generally the superior of the two, and in most cases gives values of the normal force derivatives of the flares which agree very well with the experimental results. Centers of pressure of the flares are presented and comparisons are made with results obtained from the theories mentioned. In general, the comparisons show that the assumption of conical flow over the flares is comparable to use of the second-order shock-expansion method in determining the centers of pressure, and in many cases both methods give values which agree closely with the experimental results

    Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma

    Full text link
    A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 AU. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are non-uniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3-4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Nonlinear and linear timescales near kinetic scales in solar wind turbulence

    Get PDF
    The application of linear kinetic treatments to plasma waves, damping, and instability requires favorable inequalities between the associated linear timescales and timescales for nonlinear (e.g., turbulence) evolution. In the solar wind these two types of timescales may be directly compared using standard Kolmogorov-style analysis and observational data. The estimated local (in scale) nonlinear magnetohydrodynamic cascade times, evaluated as relevant kinetic scales are approached, remain slower than the cyclotron period, but comparable to or faster than the typical timescales of instabilities, anisotropic waves, and wave damping. The variation with length scale of the turbulence timescales is supported by observations and simulations. On this basis the use of linear theory—which assumes constant parameters to calculate the associated kinetic rates—may be questioned. It is suggested that the product of proton gyrofrequency and nonlinear time at the ion gyroscales provides a simple measure of turbulence influence on proton kinetic behavior

    Preflare magnetic and velocity fields

    Get PDF
    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flare

    Epidemiology of chronic pain in children and adolescents : a protocol for a systematic review update

    Get PDF
    Funding This work was supported by an operating grant from the Canadian Institutes of Health Research (FRN167902) awarded to CTC and funding from the Dalhousie Medical Research Foundation (DMRF). CTC is the senior author and is supported by a Tier 1 Canada Research Chair with infrastructure support from the Canada Foundation for Innovation. CLL is supported by an IWK Health Centre Summer Studentship (1025420). PRT is supported by a Research Nova Scotia Scholars Award, a Nova Scotia Graduate Scholarship and an IWK Graduate Studentship Award, and is a trainee member of Pain Child Health (PICH).Peer reviewedPublisher PD

    Small-Scale and Global Dynamos and the Area and Flux Distributions of Active Regions, Sunspot Groups, and Sunspots: A Multi-Database Study

    Get PDF
    In this work we take advantage of eleven different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions -- where a pure Weibull (log-normal) characterizes the distribution of structures with fluxes below (above) 102110^{21}Mx (102210^{22}Mx). We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended into smaller fluxes), making our results compatible with the results of Parnell et al. (2009)
    corecore