1,829 research outputs found
Hopf bifurcation in a gene regulatory network model: Molecular movement causes oscillations
Gene regulatory networks, i.e. DNA segments in a cell which interact with each other indirectly through their RNA and protein products, lie at the heart of many important intracellular signal transduction processes. In this paper we analyse a mathematical model of a canonical gene regulatory network consisting of a single negative feedback loop between a protein and its mRNA (e.g. the Hes1 transcription factor system). The model consists of two partial differential equations describing the spatio-temporal interactions between the protein and its mRNA in a 1-dimensional domain. Such intracellular negative feedback systems are known to exhibit oscillatory behaviour and this is the case for our model, shown initially via computational simulations. In order to investigate this behaviour more deeply, we next solve our system using Greens functions and then undertake a linearized stability analysis of the steady states of the model. Our results show that the diffusion coefficient of the protein/mRNA acts as a bifurcation parameter and gives rise to a Hopf bifurcation. This shows that the spatial movement of the mRNA and protein molecules alone is sufficient to cause the oscillations. This has implications for transcription factors such as p53, NF-B and heat shock proteins which are involved in regulating important cellular processes such as inflammation, meiosis, apoptosis and the heat shock response, and are linked to diseases such as arthritis and cancer
Multiscale modelling of cancer progression and treatment control : the role of intracellular heterogeneities in chemotherapy treatment
Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.PostprintPeer reviewe
Mean field analysis of a spatial stochastic model of a gene regulatory network
A gene regulatory network may be defined as a collection of DNA segments which interact with each other indirectly through their RNA and protein products. Such a network is said to contain a negative feedback loop if its products inhibit gene transcription, and a positive feedback loop if a gene product promotes its own production. Negative feedback loops can create oscillations in mRNA and protein levels while positive feedback loops are primarily responsible for signal amplification. It is often the case in real biological systems that both negative and positive feedback loops operate in parameter regimes that result in low copy numbers of gene products. In this paper we investigate the spatio-temporal dynamics of a single feedback loop in a eukaryotic cell. We first develop a simplified spatial stochastic model of a canonical feedback system (either positive or negative). Using a Gillespie's algorithm, we compute sample trajectories and analyse their corresponding statistics. We then derive a system of equations that describe the spatio-temporal evolution of the stochastic means. Subsequently, we examine the spatially homogeneous case and compare the results of numerical simulations with the spatially explicit case. Finally, using a combination of steady-state analysis and data clustering techniques, we explore model behaviour across a subregion of the parameter space that is difficult to access experimentally and compare the parameter landscape of our spatio-temporal and spatially-homogeneous models.Peer reviewe
Quantitative Predictive Modelling Approaches to Understanding Rheumatoid Arthritis:A Brief Review
Rheumatoid arthritis is a chronic autoimmune disease that is a major public health challenge. The disease is characterised by inflammation of synovial joints and cartilage erosion, which lead to chronic pain, poor life quality and, in some cases, mortality. Understanding the biological mechanisms behind the progression of the disease, as well as developing new methods for quantitative predictions of disease progression in the presence/absence of various therapies is important for the success of therapeutic approaches. The aim of this study is to review various quantitative predictive modelling approaches for understanding rheumatoid arthritis. To this end, we start by briefly discussing the biology of this disease and some current treatment approaches, as well as emphasising some of the open problems in the field. Then, we review various mathematical mechanistic models derived to address some of these open problems. We discuss models that investigate the biological mechanisms behind the progression of the disease, as well as pharmacokinetic and pharmacodynamic models for various drug therapies. Furthermore, we highlight models aimed at optimising the costs of the treatments while taking into consideration the evolution of the disease and potential complications.Publisher PDFPeer reviewe
Mathematical Modelling of Cancer Invasion:The Multiple Roles of TGF-β Pathway on Tumour Proliferation and Cell Adhesion
VB acknowledges support from an Engineering and Physical Sciences Research Council (UK) grant number EP/L504932/1. RE was partially supported by an Engineering and Physical Sciences Research Council (UK) grant number EP/K033689/1.In this paper, we develop a non-local mathematical model describing cancer cell invasion and movement as a result of integrin-controlled cell–cell adhesion and cell–matrix adhesion, and transforming growth factor-beta (TGF-β) effect on cell proliferation and adhesion, for two cancer cell populations with different levels of mutation. The model consists of partial integro-differential equations describing the dynamics of two cancer cell populations, coupled with ordinary differential equations describing the extracellular matrix (ECM) degradation and the production and decay of integrins, and with a parabolic PDE governing the evolution of TGF-β concentration. We prove the global existence of weak solutions to the model. We then use our model to explore numerically the role of TGF-β in cell aggregation and movement.Publisher PDFPeer reviewe
Preface [Special issue on Modeling and Simulation of Tumor Development, Treatment and Control]
Preface of the Special Issue: Modeling and Simulation of Tumor Development, Treatment, and Control, Edited by Nicola Bellomo and Elena De Angelis, Volume 37, Issue 11, Pages 1121-1252, 2003, Mathematical and Computer Modelling, ISSN 0895-7177, ELSEVIE
- …
