2,096 research outputs found

    ChimpCheck: Property-Based Randomized Test Generation for Interactive Apps

    Full text link
    We consider the problem of generating relevant execution traces to test rich interactive applications. Rich interactive applications, such as apps on mobile platforms, are complex stateful and often distributed systems where sufficiently exercising the app with user-interaction (UI) event sequences to expose defects is both hard and time-consuming. In particular, there is a fundamental tension between brute-force random UI exercising tools, which are fully-automated but offer low relevance, and UI test scripts, which are manual but offer high relevance. In this paper, we consider a middle way---enabling a seamless fusion of scripted and randomized UI testing. This fusion is prototyped in a testing tool called ChimpCheck for programming, generating, and executing property-based randomized test cases for Android apps. Our approach realizes this fusion by offering a high-level, embedded domain-specific language for defining custom generators of simulated user-interaction event sequences. What follows is a combinator library built on industrial strength frameworks for property-based testing (ScalaCheck) and Android testing (Android JUnit and Espresso) to implement property-based randomized testing for Android development. Driven by real, reported issues in open source Android apps, we show, through case studies, how ChimpCheck enables expressing effective testing patterns in a compact manner.Comment: 20 pages, 21 figures, Symposium on New ideas, New Paradigms, and Reflections on Programming and Software (Onward!2017

    Real-time deep hair matting on mobile devices

    Full text link
    Augmented reality is an emerging technology in many application domains. Among them is the beauty industry, where live virtual try-on of beauty products is of great importance. In this paper, we address the problem of live hair color augmentation. To achieve this goal, hair needs to be segmented quickly and accurately. We show how a modified MobileNet CNN architecture can be used to segment the hair in real-time. Instead of training this network using large amounts of accurate segmentation data, which is difficult to obtain, we use crowd sourced hair segmentation data. While such data is much simpler to obtain, the segmentations there are noisy and coarse. Despite this, we show how our system can produce accurate and fine-detailed hair mattes, while running at over 30 fps on an iPad Pro tablet.Comment: 7 pages, 7 figures, submitted to CRV 201

    Unifying Human Motion Synthesis and Style Transfer with Denoising Diffusion Probabilistic Models

    Get PDF
    Generating realistic motions for digital humans is a core but challenging part of computer animations and games, as human motions are both diverse in content and rich in styles. While the latest deep learning approaches have made significant advancements in this domain, they mostly consider motion synthesis and style manipulation as two separate problems. This is mainly due to the challenge of learning both motion contents that account for the inter-class behaviour and styles that account for the intra-class behaviour effectively in a common representation. To tackle this challenge, we propose a denoising diffusion probabilistic model solution for styled motion synthesis. As diffusion models have a high capacity brought by the injection of stochasticity, we can represent both inter-class motion content and intra-class style behaviour in the same latent. This results in an integrated, end-to-end trained pipeline that facilitates the generation of optimal motion and exploration of content-style coupled latent space. To achieve high-quality results, we design a multi-task architecture of diffusion model that strategically generates aspects of human motions for local guidance. We also design adversarial and physical regulations for global guidance. We demonstrate superior performance with quantitative and qualitative results and validate the effectiveness of our multi-task architecture

    Denoising Diffusion Probabilistic Models for Styled Walking Synthesis

    Full text link
    Generating realistic motions for digital humans is time-consuming for many graphics applications. Data-driven motion synthesis approaches have seen solid progress in recent years through deep generative models. These results offer high-quality motions but typically suffer in motion style diversity. For the first time, we propose a framework using the denoising diffusion probabilistic model (DDPM) to synthesize styled human motions, integrating two tasks into one pipeline with increased style diversity compared with traditional motion synthesis methods. Experimental results show that our system can generate high-quality and diverse walking motions

    Context-Aware Transformer for 3D Point Cloud Automatic Annotation

    Full text link
    3D automatic annotation has received increased attention since manually annotating 3D point clouds is laborious. However, existing methods are usually complicated, e.g., pipelined training for 3D foreground/background segmentation, cylindrical object proposals, and point completion. Furthermore, they often overlook the inter-object feature relation that is particularly informative to hard samples for 3D annotation. To this end, we propose a simple yet effective end-to-end Context-Aware Transformer (CAT) as an automated 3D-box labeler to generate precise 3D box annotations from 2D boxes, trained with a small number of human annotations. We adopt the general encoder-decoder architecture, where the CAT encoder consists of an intra-object encoder (local) and an inter-object encoder (global), performing self-attention along the sequence and batch dimensions, respectively. The former models intra-object interactions among points, and the latter extracts feature relations among different objects, thus boosting scene-level understanding. Via local and global encoders, CAT can generate high-quality 3D box annotations with a streamlined workflow, allowing it to outperform existing state-of-the-art by up to 1.79% 3D AP on the hard task of the KITTI test set

    Prevalence of obesity and screening for diabetes among secondary school students

    Get PDF
    Introduction There is an increasing trend of obesity in children and adolescent globally. The objectives of this study were to identify the prevalence of overweight and obesity among students from secondary schools and to determine the mean random blood sugar (RBS) for the overweight and obese students. Methods This was a cross sectional study. Two secondary schools that were scheduled for visit by the School Health Team, Taiping in July 2016 were included. A standardized data collection sheet was used to collect the data. Overweight and obesity were defined based on WHO 2007 reference for BMI-for-age criteria. Random blood glucose was checked for overweight and obese students. Results A total of 184 school students consented and participated. 128 (69.6%) were female and 90 (48.9%) were Malays. The mean weight and height were 56.21 kg and 1.61 m respectively with BMI of 21.49 kg/m2. Overall, the prevalence of obese and overweight were 12.5% and 10.9% respectively. Among the 4 BMI groups, there were no significant difference found in sex (p=0.849) and races (p=0.536). However, there was significant difference (p=0.042) in mean RBS for obese and overweight students between races. RBS readings among overweight and obese students were within normal range with mean of 5.95 (0.67) mmol/l (range between 4.60 – 7.70 mmol/l). Conclusions The overall prevalence of overweight and obesity were comparable with other studies done in Malaysia. Nevertheless, there was no prevalence of Type II diabetes mellitus among them

    Pretargeted Molecular Imaging and Radioimmunotherapy

    Get PDF
    Pretargeting is a multi-step process that first has an unlabeled bispecific antibody (bsMAb) localize within a tumor by virtue of its anti-tumor binding site(s) before administering a small, fast-clearing radiolabeled compound that then attaches to the other portion of the bsMAb. The compound's rapid clearance significantly reduces radiation exposure outside of the tumor and its small size permits speedy delivery to the tumor, creating excellent tumor/nontumor ratios in less than 1 hour. Haptens that bind to an anti-hapten antibody, biotin that binds to streptavidin, or an oligonucleotide binding to a complementary oligonucleotide sequence have all been radiolabeled for use by pretargeting. This review will focus on a highly flexible anti-hapten bsMAb platform that has been used to target a variety of radionuclides to image (SPECT and PET) as well as treat tumors

    Temporal and Spatial Variability of Precipitation from Observations and Models

    Get PDF
    Principal component analysis (PCA) is utilized to explore the temporal and spatial variability of precipitation from GPCP and a CAM5 simulation from 1979 to 2010. In the tropical region, the interannual variability of tropical precipitation is characterized by two dominant modes (El Niño and El Niño Modoki). The first and second modes of tropical GPCP precipitation capture 31.9% and 15.6% of the total variance, respectively. The first mode has positive precipitation anomalies over the western Pacific and negative precipitation anomalies over the central and eastern Pacific. The second mode has positive precipitation anomalies over the central Pacific and negative precipitation anomalies over the western and eastern Pacific. Similar variations are seen in the first two modes of tropical precipitation from a CAM5 simulation, although the magnitudes are slightly weaker than in the observations. Over the Northern Hemisphere (NH) high latitudes, the first mode, capturing 8.3% of the total variance of NH GPCP precipitation, is related to the northern annular mode (NAM). During the positive phase of NAM, there are negative precipitation anomalies over the Arctic and positive precipitation anomalies over the midlatitudes. Over the Southern Hemisphere (SH) high latitudes, the first mode, capturing 13.2% of the total variance of SH GPCP precipitation, is related to the southern annular mode (SAM). During the positive phase of the SAM, there are negative precipitation anomalies over the Antarctic and positive precipitation anomalies over the midlatitudes. The CAM5 precipitation simulation demonstrates similar results to those of the observations. However, they do not capture both the high precipitation anomalies over the northern Pacific Ocean or the position of the positive precipitation anomalies in the SH
    • …
    corecore