2,363 research outputs found

    Structural and electrical characterization of hybrid metal-polypyrrole nanowires

    Full text link
    We present here the synthesis and structural characterization of hybrid Au-polypyrrole-Au and Pt- polypyrrole-Au nanowires together with a study of their electrical properties from room-temperature down to very low temperature. A careful characterization of the metal-polymer interfaces by trans- mission electron microscopy revealed that the structure and mechanical strength of bottom and upper interfaces are very different. Variable temperature electrical transport measurements were performed on both multiple nanowires - contained within the polycarbonate template - and single nanowires. Our data show that the three-dimensional Mott variable-range-hopping model provides a complete framework for the understanding of transport in PPy nanowires, including non-linear current-voltage characteristics and magnetotransport at low temperatures.Comment: Phys. Rev. B Vol. 76 Issue 11 (2007

    Diurnal to interannual variability of low‐level cloud cover over western equatorial Africa in May–October

    Get PDF
    This study examines the diurnal to interannual variations of the stratiform cloud cover in May–October (1971–2019) from a 3-hourly station database and from ERA5 reanalyses over western equatorial Africa (WEA). The main diurnal variations of the local-scale fraction and genus of stratiform clouds are synthesized into three canonical diurnal types (i.e., “clear,” “clear afternoon,” “cloudy” days). The interannual variations of frequencies of the three diurnal types during the cloudiest months (JJAS) are mostly associated with two main mechanisms: a meridional shallow overturning cell associating more “cloudy” and less “clear” and “clear afternoon” days to anomalous southerlies below 900 hPa over and around WEA, anomalous ascent around 5°–7°N, anomalous northerlies between 875 and 700 hPa, and anomalous subsidence over the equatorial Atlantic. This circulation is strongly related to interannual variations of the equatorial Atlantic upwelling (i.e., more clouds when the upwelling is strong) associated with a meridional shift of the Intertropical Convergence Zone over the Tropical Atlantic and adjacent continents. The second mechanism operates mostly in the zonal direction and involves again the coupled ocean–atmosphere system over the equatorial Atlantic, but also the remote El Niño–Southern Oscillation (ENSO). An anomalously cold equatorial Atlantic drives increased low-level westerlies toward the Congo Basin. Warm ENSO events promote broad warm and easterly anomalies in the middle and upper troposphere, which increase the local static stability, and thus the local stratiform cloud cover over WEA. The present study suggests new mechanisms responsible for interannual variations of stratiform clouds in WEA, thus providing avenues of future research regarding the stability of the stratiform cloud deck under the ongoing differential warming of tropical ocean and land masses

    Using observed incidence to calibrate the transmission level of a mathematical model for Plasmodium vivax dynamics including case management and importation

    Get PDF
    In this work, we present a simple and flexible model for Plasmodium vivax dynamics which can be easily combined with routinely collected data on local and imported case counts to quantify transmission intensity and simulate control strategies. This model extends the model from White et al. (2016) by including case management interventions targeting liver-stage or blood-stage parasites, as well as imported infections. The endemic steady state of the model is used to derive a relationship between the observed incidence and the transmission rate in order to calculate reproduction numbers and simulate intervention scenarios. To illustrate its potential applications, the model is used to calculate local reproduction numbers in Panama and identify areas of sustained malaria transmission that should be targeted by control interventions

    Intermittent search strategies

    Full text link
    This review examines intermittent target search strategies, which combine phases of slow motion, allowing the searcher to detect the target, and phases of fast motion during which targets cannot be detected. We first show that intermittent search strategies are actually widely observed at various scales. At the macroscopic scale, this is for example the case of animals looking for food ; at the microscopic scale, intermittent transport patterns are involved in reaction pathway of DNA binding proteins as well as in intracellular transport. Second, we introduce generic stochastic models, which show that intermittent strategies are efficient strategies, which enable to minimize the search time. This suggests that the intrinsic efficiency of intermittent search strategies could justify their frequent observation in nature. Last, beyond these modeling aspects, we propose that intermittent strategies could be used also in a broader context to design and accelerate search processes.Comment: 72 pages, review articl

    Affine extension of noncrystallographic Coxeter groups and quasicrystals

    Full text link
    Unique affine extensions H^{\aff}_2, H^{\aff}_3 and H^{\aff}_4 are determined for the noncrystallographic Coxeter groups H2H_2, H3H_3 and H4H_4. They are used for the construction of new mathematical models for quasicrystal fragments with 10-fold symmetry. The case of H^{\aff}_2 corresponding to planar point sets is discussed in detail. In contrast to the cut-and-project scheme we obtain by construction finite point sets, which grow with a model specific growth parameter.Comment: (27 pages, to appear in J. Phys. A

    Electronic thermal conductivity measurements in intrinsic graphene

    Get PDF
    The electronic thermal conductivity of graphene and two-dimensional Dirac materials is of fundamental interest and can play an important role in the performance of nanoscale devices.We report the electronic thermal conductivity Ke in suspended graphene in the nearly intrinsic regime over a temperature range of 20–300 K. We present a method to extract Ke using two-point dc electron transport at low bias voltages, where the electron and lattice temperatures are decoupled. We find Ke ranging from 0.5 to 11 W/m K over the studied temperature range. The data are consistent with a model in which heat is carried by quasiparticles with the same mean free path and velocity as graphene’s charge carriers
    corecore