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Electronic thermal conductivity measurements in intrinsic graphene
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The electronic thermal conductivity of graphene and two-dimensional Dirac materials is of fundamental
interest and can play an important role in the performance of nanoscale devices. We report the electronic thermal
conductivity Ke in suspended graphene in the nearly intrinsic regime over a temperature range of 20–300 K. We
present a method to extract Ke using two-point dc electron transport at low bias voltages, where the electron
and lattice temperatures are decoupled. We find Ke ranging from 0.5 to 11 W/m K over the studied temperature
range. The data are consistent with a model in which heat is carried by quasiparticles with the same mean free
path and velocity as graphene’s charge carriers.
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The electronic heat conductivity of graphene Ke describes
how charged quasiparticles carry energy as they diffuse
in this material. It could also shed light on Ke in other
two-dimensional (2D) Dirac systems whose electronic band
structure is related to graphene’s, such as the surface states
of topological insulators.1 When a hot electron diffuses out of
graphene, it cools down the electronic distribution. Thus, mea-
surements of Ke are needed to complement the understanding
of the other hot-electron cooling mechanisms in graphene
which involve various electron-phonon couplings.2–11 Mea-
suring and controlling Ke could have applications in the heat
management of heavily doped nm-scale devices where Ke

can be dominant,12 and in optimizing graphene’s electro-
optical properties.13,14 While there have been several exper-
imental reports of the phononic thermal conductivity Kp

in graphene,13–21 reports of Ke measurements in suspended
graphene are lacking. This is because in most regimes Kp is
much larger than Ke, which makes it difficult to measure the
amount of heat carried by the charged quasiparticles (electron
and holes).

We present a carefully calibrated method to extract Ke in
graphene using dc electron transport in suspended devices.
The accuracy of the method is dependent on high-mobility
(annealed) devices. We present data from three different
samples which show consistent results. The extracted Ke are
compared with calculated values, Ke-th, for a diffusing gas
of Dirac quasiparticles. The agreement between theory and
measurements is quantitative for all three devices over the
temperature range (20–300 K) studied. Throughout the text we
use T to designate the lattice (cryostat) temperature, and Te

for the average electron temperature in the suspended devices.
At very low bias, |VB | � 1 mV, T = Te. We first describe our
samples, second, we present our Te thermometry, then show
how we apply a controlled �T using Joule heating, and finally
extract Ke from the transport data.

Figures 1(a) and 1(b) show tilted scanning electron mi-
croscopy (SEM) images of samples A and B, respectively
(see sample C in the Supplemental Material,22 SM, Fig. S1).
We confirmed using optical contrast and Raman spectroscopy
that all three samples are single-layer graphene. Sample A
is 650 nm long, 675 nm wide, and suspended 140 ± 10 nm
above the substrate [atomic force microscopy (AFM) measure-
ment)] which consists of 100 ± 2 nm of SiO2 (ellipsometry

measurement) on degenerately doped Si which is used as a
back-gate electrode. Sample B is 400 nm long, 1.05 μm wide,
and suspended 175 ± 10 nm above a 74 ± 2 nm SiO2 film on
Si. To prepare the samples, we used exfoliated graphene, and
standard e-beam lithography to define Ti(5 nm)/Au(80 nm)
contacts. The samples were suspended with a wet buffered
oxide etch (BOE) such that their only thermal connection is to
the gold contacts. We annealed the devices using Joule heating
in situ by flowing a large current in the devices23 (up to 540,
840, and 837 μA for A, B, and C). Annealing and subsequent
measurements were done under high vacuum, 10−6 Torr.

Figures 1(c) and 1(d) show dc two-point resistance data,
R = VB/I , for samples A and B, respectively, after annealing,
versus gate voltage VG, which controls charge density. From
the width of the R maximum at 11 K, we extract a half width at
half maximum (HWHM) of 0.45, 0.6, and 0.95 V for samples
A, B, C (sample C, Fig. S1). Using a parallel plate model for
the gate capacitance of the devices, these HWHMs correspond
to an impurity induced charge density24 of n∗ ≈ 1.5, 1.7, and
2.1 × 1010 cm−2.

The devices were fabricated with large contact areas be-
tween the gold electrodes and graphene crystals, 1.1–3 μm2 per
contact, to minimize the contact resistance Rc. An upper bound
for Rc can be extracted from the two-point R-VG curve in
Fig. 1(c) by fitting the data (SM,22 Sec. 2) with the expression25

R = Ro + (L/W )(1/nGeμ), where Ro is the resistance due to
neutral scatterers plus Rc, L is the length of the device, W the
width, nG the charge density induced by VG, μ the mobility,
and e the electron’s charge. We fit the data at T = Te = 100 K
for (VG − VD) > 1.3 V to avoid the thermal smearing around
the Dirac point VD . The extracted mobility for sample A in
the doped regime is μ ≈ 8.5 × 104 cm2/V s at 100 K, and
Ro ≈ 682 ± 53 and 1135 ± 80 � for hole and electron doping,
respectively. The difference between hole, Ro−h and electron
doping, Ro−e, is understood as an additional p-n barrier for
the electron due to p doping from the gold electrodes.25 At the
Dirac point, we let Ro−Dirac = (Ro−h + Ro−e)/2 = 908.5 �

for sample A. For sample C, we find Ro−Dirac = 1097 �. We
note that Ro−Dirac is much smaller than R of samples A and
C, therefore Rc < Ro−Dirac has at most a modest impact on
our measurements in these devices. It is not possible to extract
Ro for sample B because it enters the ballistic regime away
from the Dirac point (doped regime).26 The contact areas of
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FIG. 1. (Color online) Suspended graphene devices. (a) and (b)
Tilted SEM images of 650 and 400 nm long suspended graphene
transistors (samples A and B). (c) and (d) R of samples A and B vs
gate voltage VG at Te = T = 11, 50, 100, 150, 210, and 300 K, and
VB = 0.5 mV.

sample B are larger, and its width wider, than for samples A
and C. Assuming a similar resistance per unit area as for A
and C, we expect Rc � 657 � for B. Based on the reported
thermal conductance of Au/Ti/graphene and graphene/SiO2

interfaces,27 the thermal resistance of our contacts are several
orders of magnitude lower than the one we measure below
for graphene. Thus, the thermal resistance of the contacts can
safely be neglected.

Figure 2(a) shows R versus cryostat temperature T calibra-
tion curves for samples A (circles, left axis), B (squares, right
axis), and C (triangles, left axis) near VG = VD . R = VB/I

data are extracted from the slope of the I -VB data as shown in
the inset of Fig. 2(a) at 11 K (solid) and 300 K (dashed), for
±1 mV bias where no Joule heating effect is present (Te = T ).
The data are taken at VG = 0.5 V close to VD = 0.33 V for
sample A, and at VG = 0 V for samples B and C (VD = −0.1
and 0.07 V), corresponding to nG = 5.7, 2.9, and −1.5 ×
109 cm−2. The T dependence of the data shows an insulating
behavior up to ≈200 K for samples A and C, and up to
300 K for sample B. The interpolated dashed lines in Fig. 2(a)
will be used as thermometry curves to monitor Te. Note
that the thermometry is most accurate where the curves are
steepest.

Figure 2(b) shows the relative conductance G(T )/G11 K in
the intrinsic regime extracted from Fig. 2(a) for samples A
and B. The T dependence of G in graphene, at low charge
density, is strongly dependent on the type of charge transport.
For ballistic transport, we expect a very weak temperature
dependence at low T , and a linear dependence when kBT �
EF .28 In the diffusive regime, the expected temperature
dependence depends on the type of charge scatterers, and
G(T )/G11 K ∝ T α with α = −1, 0, 2 for acoustic phonon,
short-range (neutral), and long-range (charged) scatterers,
respectively.11,29 The temperature dependence of real samples
is expected to combine all three types of scattering. We fit
the data with a function G/G11 K = 1 + AT p, and extract
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FIG. 2. (Color online) Electron thermometry. (a) Temperature
dependence of R in sample A (circles, left axis), sample B (squares,
right axis), and sample C (triangles, left axis) near the charge
degeneracy nG = 5.7, 2.9 and −1.5 × 109 cm−2. The dashed lines are
numerically interpolated curves used for thermometry. Inset: I -VB

data for sample A, |VB | < 1 mV, whose slope is used to extract
R. The solid (dashed) line is at T = Te = 11 (300) K. (b) Relative
conductance G/G11 K of sample A (circles) and sample B (squares) vs
T = Te. The solid symbols show the raw two-point data, and the open
symbols the data after subtracting Rc = Ro−Dirac (see text). The solid
and dashed lines are power law fits consistent with charge impurity
scattering.

p = 1.85, 1.74, 1.72, and 1.63 ± 0.03 for sample A with
Rc = Ro−Dirac and 0 (open and solid circles), and sample
B with Rc = 657 and 0 � (open and solid squares). This
T dependence strongly supports diffusive charge transport
dominated by long-range charge impurities, as reported in pre-
vious experiments on high-mobility devices11,23 and expected
theoretically.29 The small departure from a T 2 dependence is
expected as the samples are not exactly at the Dirac point.
We conclude that all samples are in the diffusive regime at
low charge density [Fig. 2(b) and SM, Sec. 3] and scattering is
predominantly due to charged impurities. The data in Fig. 2(a),
and its agreement with theory, serves as a reliable thermometer
for Te in our devices.

After establishing the Te thermometry, we demonstrate
controlled Joule self-heating of the electrons to apply a thermal
bias �T = Te − T between the suspended graphene and the
electrodes. Figure 3(a) shows R vs VB for sample A at T = 50,
100, 150 K (for samples B and C, see Figs. S3 and S4).
Figure 3(b) shows the details of the data at 100 K. R decreases
monotonically with increasing VB , at all T . We argue that this
change in the R vs VB data is caused by Joule heating of
the sample. Other mechanisms which could cause a nonlinear
I -VB relation include scattering from flexural phonons, in-
plane optical phonons, substrate phonons, and Zener-Klein
tunneling. We restrict our measurements to VB � 30 meV.
This rules out any R change due to scattering from optical
in-plane phonons, ≈200 meV, and flexural phonons, ≈70 meV,
in graphene.11 Phonons in the substrate can also be ruled out
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FIG. 3. (Color online) Electron heating. (a) R vs VB at various
T for device A at VG = 0.5 V ≈ VD . (b) Details of the data at T =
100 K. Joule heating due to VB raises the flake’s average Te above T .
Te is extracted using Fig. 2(a). (c) and (d) show Te vs VB in sample A
at a few different T , and at T = 100 K, respectively.

as the samples are suspended. The contribution of Zener-Klein
tunneling to I -VB nonlinearity was only observed in very
low-mobility devices, and at VB > 100 mV.30 This leaves Joule
heating as the only plausible cause for the observed R vs
VB behavior.31 Using the calibration curve for the samples,
Fig. 2(a), and data from Figs. 3(a) and 3(b), we extract the
average Te vs VB , as shown for sample A in Figs. 3(c) and 3(d).
In Fig. 3(d), we fit a power law (solid line) Te = 100 + BV x

B ,
and find x = 2.00 ± 0.04, as expected for Joule heating over
a small Te range, where Ke and R do not change appreciably
(samples B and C, SM, Sec. 4). Figures 3(d), S3(d), and S4(d)
show that the accuracy with which Te can be extracted is much
better than 1 K. We calculate Te errors from the scatter of the
data in Fig. 3(d), and similar plots at each T , to vary from
0.2 K [steepest regions of Fig. 2(a)] up to 2 K [flat regions
of Fig. 2(a)]. The smooth dependence of Te on VB at all T is
consistent with electrons having a well defined temperature,
as predicted by calculations of the e-e collision length32

(SM, Sec. 5). This is also confirmed by the Ke data shown
below.

Since our devices are much wider than the elastic mean free
path (SM, Sec. 3), the effect of their edges on transport should
be small. We use a one-dimensional heat equation to extract
Ke in our devices, Ke

d2Te

dx2 + Q = 0, where Q = RI 2/WLh is
the Joule heating power per unit volume, W the width, L the
length, and h = 0.335 nm the thickness. Using boundary con-
ditions Te = T at the two ends (contacts) of the flake, we find
Te(x) = T + (LQx − Qx2)/2Ke. Averaging over the length
we find, Te = (1/L)

∫ L

0 Te(x)dx = T + (QL2)/(12Ke). Fi-

nally, Ke = QL2

12�T
, where �T = Te − T . Using R and I from

Fig. 3 and similar plots, for �T = 1, 2, and 5 K we extract
Ke vs Te in Fig. 4(a) for sample A. Figure 4(b) shows Ke

vs Te for all three samples for �T = 5 K. Data in Fig. 4
show a strong Ke dependence on Te ranging from roughly
0.5 W/K m at 20 K to 11 W/K m at 300 K. The Te range
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FIG. 4. (Color online) Electronic thermal conductivity Ke in the
quasi-intrinsic regime, ntot,T =0 ≈ 1.7 × 1010 cm−2 (samples A and B)
and 2.1 × 1010 cm−2 (sample C). (a) Ke vs Te for �T = Te − T = 1,
2, and 5 K for sample A. The solid line is a theoretical calculation
of Ke-th. The dashed line shows the same calculation with a contact
resistance Rc = Ro−Dirac. The error bars are shown for the �T = 5 K
data. (b) Ke vs Te for �T = 5 K for samples A, B and C, and Ke-th

for each sample.

is limited to the region where we have accurate thermometry
[Fig. 2(a)], up to ≈200 K for A and C, and 300 K for B. Error
bars representing the total uncertainty on Ke are shown for the
�T = 5 K data (see SM, Sec. 6). If the VB needed to apply
�T were to dope significantly the samples, it could affect
the measured Ke. Using ntot(T ) (SM, Sec. 3),33 we define
an effective chemical potential μeff(T ) = h̄vF

√
πntot(T ). For

instance, at T = 100 K, μeff(100 K) = 18, 18.4, and 19.5 meV,
respectively, for the three devices. The VB necessary to achieve
�T � 5 K in Fig. 4 is always smaller than μeff(T ). We only
observe a change in the extracted Ke values when �T exceeds
8 K, and VB > μeff(T ). Thus VB does not affect our Ke, with
the caveat that we cannot extract Ke precisely at n = 0. The
thermoelectric voltages in our devices are negligible compared
to VB .34,35

We compare our data with the usual model for diffusing
particles in two dimensions, Ke-th = 1

2Cvl. If the heat flow
is due to charge carriers, then the specific heat is C = Ce,
the velocity is vF = 106 m/s, and the mean free path l is the
same as for charge transport. We find (SM, Sec. 3), lA-avg,
lB-avg, and lC-avg = 71(85), 47(59), and 37(51) nm on average
over the Te range with Rc = 0 (Ro−Dirac). We calculate Ce

using the density of states for graphene and the Fermi-Dirac
distribution (SM, Sec. 7). We plot Ke-th in Figs. 4(a) and 4(b)
as solid lines with Rc = 0. They capture the quantitative Te

dependence of our Ke data. The Ke data points are in good
quantitative agreement with the calculated values for all three
samples, and especially for samples A and C. The dashed line
in Fig. 4(a) shows Ke-th if we use Rc = Ro−Dirac. If we account
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for Rc, i.e., smaller Q, Ke changes by the same magnitude
as Ke-th but in the opposite direction (not shown for clarity).
The quantitative agreement between data and theory is not as
accurate for sample B since its R is smaller than for samples
A and C, and the impact of Rc could be bigger. The data and
calculations shown in Fig. 4(b) with Rc = 0 are within 20%,
30%, and 15% of each other for samples A, B, and C. If we
include Rc = Ro, which overestimates the effect due to Rc,
the agreement between the data and theory for sample B is
at worst within a factor of 2, and much better for samples
A and C. We fit a power law expression Ke ∝ T p over Te =
45–185 K for samples A and B, and find p = 1.73 ± 0.15
and 1.63 ± 0.13, which is very close to the fit on Ke-th, pth =
1.62 and 1.59. This agreement is preserved even if we let
Rc = Ro. As expected, pth goes to 2 when μ/kT � 1. We
conclude that the Ke data is consistent with heat being carried
by particles moving with the vF and l of the charge carriers. The
magnitude of Ke reaches ≈11 W/K m at 300 K with ntot,T =0 ≈
1.7–2.1 × 1010 cm−2.

A condition to make reliable Ke measurements is that all
of the Joule heat remains in the carriers until they diffuse
to the leads. Both experiments and theory confirm that the
electron-phonon energy transfer in high-mobility graphene, at
low VB , is very small below 300 K,13,14,29,31 and decreases at
lower T and n. In our devices, we extract a cooling length for

hot electrons (SM, Sec. 8), ξ ≈ 100–10 μm for Te = 20–300
K. Since ξ is much longer than L, and VB below the energy of
optical phonons, we expect Te and T to be decoupled in our
devices when VB �= 0, and all of the Joule heat to be carried
to the contacts by charge carriers. Indeed, the Ke we measure
are two to three orders of magnitude lower than the reported
phonon thermal conductivity Kp in graphene.19,20

In summary, we fabricated high quality suspended graphene
devices, developed self-thermometry and self-heating methods
to extract and control Te, and the electronic thermal con-
ductivity in graphene. We extracted Ke in the quasi-intrinsic
regime, ntot,T =0 ≈ 1.7–2.1 × 1010 cm−2, from Te = 20 to 300
K. The Ke data in three different devices are in very good
agreement with a model where heat is carried by diffusing
Dirac quasiparticles. Our results provide evidence that the
dominant electron cooling mechanism in intrinsic submicron
graphene devices below 300 K is hot-electron diffusion to
the leads. The theoretical model we use naturally leads to the
Wiedemann-Franz relation in the doped regime and suggests
that it should be obeyed in graphene.
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University. We made use of the QNI cleanrooms.
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