531 research outputs found

    Profile of idursulfase for the treatment of Hunter syndrome

    Get PDF
    Simona Sestito, Ferdinando Ceravolo, Michele Grisolia, Elisa Pascale, Licia Pensabene, Daniela Concolino Department of Pediatrics, University Magna Graecia of Catanzaro, Catanzaro, Italy Abstract: Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare X-linked lysosomal storage disorder caused by deficiency of the enzyme iduronate-2-sulfatase (IDS). Enzyme replacement therapy (ERT) with recombinant human IDS, available since 2005, is currently the most appropriate treatment for this progressive, multisystemic, chronic, and life-threatening disease. Efficacy and safety of therapy with idursulfase have been assessed in several clinical trials, and confirmed in many clinical reports. Long-term follow-up of patients receiving ERT has demonstrated the importance of an early onset of treatment with idursulfase, before irreversible pathological changes occur. Intravenously administered idursulfase is not able to cross the blood–brain barrier, so neurological signs and symptoms cannot benefit from ERT, still remaining a major challenge in the treatment of MPS II. Keywords: MPS II, glycosaminoglycans, enzyme replacement therapy, ER

    Update on leukodystrophies and developing trials

    Get PDF
    Leukodystrophies are a heterogeneous group of rare genetic disorders primarily affecting the white matter of the central nervous system. These conditions can present a diagnostic challenge, requiring a comprehensive approach that combines clinical evaluation, neuroimaging, metabolic testing, and genetic testing. While MRI is the main tool for diagnosis, advances in molecular diagnostics, particularly whole-exome sequencing, have significantly improved the diagnostic yield. Timely and accurate diagnosis is crucial to guide symptomatic treatment and assess eligibility to participate in clinical trials. Despite no specific cure being available for most leukodystrophies, gene therapy is emerging as a potential treatment avenue, rapidly advancing the therapeutic prospects in leukodystrophies. This review will explore diagnostic and therapeutic strategies for leukodystrophies, with particular emphasis on new trials

    Crilin: A CRystal calorImeter with Longitudinal InformatioN for a future Muon Collider

    Full text link
    The measurement of physics processes at new energy frontier experiments requires excellent spatial, time, and energy resolutions to resolve the structure of collimated high-energy jets. In a future Muon Collider, the beam-induced backgrounds (BIB) represent the main challenge in the design of the detectors and of the event reconstruction algorithms. The technology and the design of the calorimeters should be chosen to reduce the effect of the BIB, while keeping good physics performance. Several requirements can be inferred: i) high granularity to reduce the overlap of BIB particles in the same calorimeter cell; ii) excellent timing (of the order of 100 ps) to reduce the out-of-time component of the BIB; iii) longitudinal segmentation to distinguish the signal showers from the fake showers produced by the BIB; iv) good energy resolution (less than 10%/sqrt(E)) to obtain good physics performance, as has been already demonstrated for conceptual particle flow calorimeters. Our proposal consists of a semi-homogeneous electromagnetic calorimeter based on Lead Fluoride Crystals (PbF2) readout by surface-mount UV-extended Silicon Photomultipliers (SiPMs): the Crilin calorimeter. In this paper, the performances of the Crilin calorimeter in the Muon Collider framework for hadron jets reconstruction have been analyzed. We report the single components characterizations together with the development of a small-scale prototype, consisting of 2 layers of 3x3 crystals each

    The application of structural retinal biomarkers to evaluate the effect of intravitreal ranibizumab and dexamethasone intravitreal implant on treatment of diabetic macular edema

    Get PDF
    Background: The aim of this study was to compare the therapeutic effect of intravitreal treatment with ranibizumab and dexamethasone using specific swept-source optical coherence tomography retinal biomarkers in patients with diabetic macular edema (DME). Methods: 156 treatment-naïve patients with DME were divided in two groups: 75 patients received 3 monthly intravitreal injections of ranibizumab 0.5 mg (Lucentis®) (Group 1) and 81 patients received an intravitreal implant of dexamethasone 0.7 mg (Ozurdex®) (Group 2). Patients were evaluated at baseline (V1), at three months post-treatment in Group 1, and at two months post-treatment in Group 2 (V2). Best-corrected visual acuity (BCVA) and swept source-OCT were recorded at each interval. Changes between V1 and V2 were analyzed using the Wilcoxon test and differences between the two groups of treatment were assessed using the Mann-Whitney test. Multiple regression analysis was performed to evaluate the possible OCT biomarker (CRT, ICR, CT, SND, HRS) as predictive factors for final visual acuity improvement. Results: In both groups, BCVA improved (p-value < 0.0001), and a significant reduction in central retinal thickness, intra-retinal cysts, red dots, hyper-reflective spots (HRS), and serous detachment of neuro-epithelium (SDN) was observed. A superiority of dexamethasone over ranibizumab in reducing the SDN height (p-value = 0.03) and HRS (p-value = 0.01) was documented. Conclusions: Ranibizumab and dexamethasone are effective in the treatment of DME, as demonstrated by functional improvement and morphological biomarker change. DME associated with SDN and HRS represents a specific inflammatory pattern for which dexamethasone appears to be more effective

    Follow-up studies of Cebus apella exposed to heavy infections with Schistosoma mansoni

    Get PDF

    Beneficial Effects of Polydeoxyribonucleotide (PDRN) in an In Vitro Model of Fuchs Endothelial Corneal Dystrophy

    Get PDF
    Fuchs endothelial corneal dystrophy (FECD) is a bilateral, hereditary syndrome characterized by progressive irreversible injury in the corneal endothelium; it is the most frequent cause for corneal transplantation worldwide. Oxidative stress induces the apoptosis of corneal endothelial cells (CECs), and has a crucial function in FECD pathogenesis. The stimulation of the adenosine A2A receptor (A2Ar) inhibits oxidative stress, reduces inflammation and modulates apoptosis. Poly-deoxyribonucleotide (PDRN) is a registered drug that acts through adenosine A2Ar. Thus, the goal of this study was to assess the effect of PDRN in an in vitro FECD model. Human Corneal Endothelial Cells (IHCE) were challenged with H2O2 (200 µM) alone or in combination with PDRN (100 µg/mL), PDRN plus ZM241385 (1 µM) as an A2Ar antagonist, and CGS21680 (1 µM) as a well-known A2Ar agonist. H2O2 reduced the cells’ viability and increased the expression of the pro-inflammatory markers NF-κB, IL-6, IL-1β, and TNF-α; by contrast, it decreased the expression of the anti-inflammatory IL-10. Moreover, the pro-apoptotic genes Bax, Caspase-3 and Caspase-8 were concurrently upregulated with a decrease of Bcl-2 expression. PDRN and CGS21680 reverted the negative effects of H2O2. Co-incubation with ZM241385 abolished the effects of PDRN, indicating that A2Ar is involved in the mode of action of PDRN. These data suggest that PDRN defends IHCE cells against H2O2-induced damage, potentially as a result of its antioxidant, anti-inflammatory and antiapoptotic properties, suggesting that PDRN could be used as an FECD therapy
    • …
    corecore