31 research outputs found

    Temporal Evolution of Soot Particles from C2H2/O2 Combustion in a Closed Chamber

    Get PDF
    An experimental study of soot formation in C2H2/O2 flames at different C/O ratios in a closed chamber was carried out. The evolution temporal behavior and the volume fraction of soot particles were determined by laser extinction. It was found that total time for the soot formation phenomenon in flames from C2H2/O2 with C/O ratio > 0.75 or C2H2/O2/Ar with C/O ratio = 1.00 was around 3.0-4.0 ms after ignition. At almost the same time the excited radicals reached their maximum emission intensity and the gases under combustion reached their maximum pressure. The micrographs show compact and approximately spherical soot particles with diameters within 60-150 nm. However, soot aggregates are not compact and they present a netlike structure similar to that of an aerogel.Neste trabalho, realizou-se um estudo da formação de partículas de fuligem durante a combustão de misturas de C2H2/O2 em diferentes razões C/O. A evolução temporal e a fração de volume das partículas de fuligem foram obtidas através da extinção de um feixe de laser. Constatou-se que o tempo total de formação da fuligem nas chamas de C2H2/O2 com razão C/O > 0.75 ou de C2H2/O2/Ar com razão C/O = 1.00 é de cerca de 3.0-4.0 ms, após o início da reação. O máximo de emissão dos radicais excitados e o máximo da pressão nestas reações, ocorrem praticamente neste mesmo intervalo de tempo. Observou-se a formação de partículas de fuligem compactas e aproximadamente esféricas com 60-150 nm de diâmetro. Entretanto, os agregados não são compactos e mostram uma estrutura de rede que se assemelha a de um aerogel.4753Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Bioceramics: tendencies and perspectives of an interdisciplinary area

    Get PDF
    The need for new materials to substitute injured or damaged parts of the human body has led scientists of different areas to the investigation of bioceramics since the 70's, when other materials in use started to show implantation problems. Bioceramics show some advantages like being the material that best mimics the bone tissue but also, present low mechanical strength due to its ceramic nature. This paper presents a general view about the topic.51852

    Determination of liquefied petroleum flame temperatures using emission spectroscopy

    Get PDF
    Emission spectroscopy was used in the temperature determination of LPG (liquefied petroleum gas) premixed flames. Natural emission of CH* radicals was investigated in flames under three different burning conditions: fuel/oxydizer stoichiometric ratio, fuel excess (rich flame), and oxidizer excess (lean flame). An average value of 2845 ± 70 K was obtained for CH* rotational temperature in the set up used in the experiments. This value did not show significant change with the type of flame analyzed and it is compatible with the calculated adiabatic flame temperatures of the investigated systems. This temperature value also agrees with that determined by an indirect measurement, using the sodium line reversal method, which is independent from the radical natural emission and well established in literature. Vibrational temperatures of ca. 4600 K were calculated, indicating that the CH* lifetime is insufficient for the establishment of an equilibrium state between the rotational and vibrational modes.A espectroscopia de emissão foi utilizada na determinação da temperatura de chamas pré-misturadas de GLP. Investigou-se a emissão natural de radicais CH* em três diferentes condições de queima: razão estequiométrica de combustível/oxidante, excesso de combustível (chama rica) e excesso de oxidante (chama pobre). O valor médio obtido para a temperatura rotacional de CH* foi de 2845 ± 70 K nas condições utilizadas nos experimentos. Esse valor não variou significativamente com os demais tipos de chama e é compatível com os cálculos de temperatura adiabática dos sistemas estudados. Essa temperatura também é concordante com resultados obtidos por via indireta, utilizando-se o método de linha reversa de sódio, que consiste em uma técnica bem estabelecida e independente da emissão natural. Temperaturas vibracionais de ca. 4600 K foram calculadas, indicando que o tempo de vida do CH* não é suficiente para que o equilíbrio entre os modos rotacionais e vibracionais seja estabelecido.1326133

    Evaluation of effectiveness of 45S5 bioglass doped with niobium for repairing critical-sized bone defect in in vitro and in vivo models

    Get PDF
    Here, we investigated the biocompatibility of a bioactive sodium calcium silicate glass containing 2.6 mol% Nb2O5 (denoted BGPN2.6) and compare the results with the archetypal 45S5 bioglass. The glass bioactivity was tested using a range of in vitro and in vivo experiments to assess its suitability for bone regeneration applications. in vitro studies consisted of assessing the cytocompatibility of the BGPN2.6 glass with bone-marrow-derived mesenchymal stem cells (BM-MSCs). Systemic biocompatibility was verified by means of the quantification of biochemical markers and histopathology of liver, kidneys, and muscles. The glass genotoxicity was assessed using the micronucleus test. The regeneration of a calvarial defect was assessed using both qualitative and quantitative analysis of three-dimensional microcomputed tomography images. The BGPN2.6 glass was not cytotoxic to BM-MSCs. It is systemically biocompatible causing no signs of damage to high metabolic and excretory organs such as the liver and kidneys. No mutagenic potential was observed in the micronucleus test. MicroCT images showed that BGPN2.6 was able to nearly fully regenerate a critical-sized calvarial defect and was far superior to standard 45S5 Bioglass. Defects filled with BGPN2.6 glass showed over 90% coverage compare to just 66% for 45S5 Bioglass. For one animal the defect was completely filled in 8 weeks. These results clearly show that Nb-containing bioactive glasses are a safe and effective biomaterial for bone replacement

    In vitro and in vivo osteogenic potential of niobium-doped 45S5 bioactive glass:A comparative study

    Get PDF
    In vitro and in vivo experiments were undertaken to evaluate the solubility, apatite-forming ability, cytocompatibility, osteostimulation, and osteoinduction for a series of Nb-containing bioactive glass (BGNb) derived from composition of 45S5 Bioglass. Inductively coupled plasma optical emission spectrometry (ICP-OES) revealed that the rate at which Na, Ca, Si, P, and Nb species are leached from the glass decrease with the increasing concentration of the niobium oxide. The formation of apatite as a function of time in simulated body fluid was monitored by 31P Magic Angle Spinning (MAS) Nuclear magnetic resonance spectroscopy. Results showed that the bioactive glasses: Bioglass 45S5 (BG45S5) and 1 mol%-Nb-containing-bioactive glass (BGSN1) were able to grow apatite layer on their surfaces within 3 h, while glasses with higher concentrations of Nb2O5 (2.5 and 5 mol%) took at least 12 h. Nb-substituted glasses were shown to be compatible with bone marrow-derived mesenchymal stem cells (BMMSCs). Moreover, the bioactive glass with 1 mol% Nb2O5 significantly enhanced cell proliferation after 4 days of treatment. Concentrations of 1 and 2.5 mol% Nb2O5 stimulated osteogenic differentiation of BMMSCs after 21 days of treatment. For the in vivo experiments, trial glass rods were implanted into circular defects in rat tibia in order to evaluate their osteoconductivity and osteostimulation. Two morphometric parameters were analyzed: (a) thickness of new-formed bone layer and (b) area of new-formed subperiostal bone. Results showed that BGNb bioactive glass is osteoconductive and osteostimulative. Therefore, these results indicate that Nb-substituted glass is suitable for biomedical applications
    corecore