61 research outputs found

    Different models of gravitating Dirac fermions in optical lattices

    Full text link
    In this paper I construct the naive lattice Dirac Hamiltonian describing the propagation of fermions in a generic 2D optical metric for different lattice and flux-lattice geometries. First, I apply a top-down constructive approach that we first proposed in [Boada {\it et al.,New J. Phys.} {\bf 13} 035002 (2011)] to the honeycomb and to the brickwall lattices. I carefully discuss how gauge transformations that generalize momentum (and Dirac cone) shifts in the Brillouin zone in the Minkowski homogeneous case can be used in order to change the phases of the hopping. In particular, I show that lattice Dirac Hamiltonian for Rindler spacetime in the honeycomb and brickwall lattices can be realized by considering real and isotropic (but properly position dependent) tunneling terms. For completeness, I also discuss a suitable formulation of Rindler Dirac Hamiltonian in semi-synthetic brickwall and π\pi-flux square lattices (where one of the dimension is implemented by using internal spin states of atoms as we originally proposed in [Boada {\it et al.,Phys. Rev. Lett. } {\bf 108} 133001 (2012)] and [Celi {\it et al.,Phys. Rev. Lett. } {\bf 112} 043001 (2012)]).Comment: 14 pages, Submitted to EPJ Special Topics for the special issue on "Quantum Gases and Quantum Coherence"; v2: minor changes, figures and references added, similar to the published version, 21 pages, 3 figure

    Unruh effect for interacting particles with ultracold atoms

    Full text link
    The Unruh effect is a quantum relativistic effect where the accelerated observer perceives the vacuum as a thermal state. Here we propose the experimental realization of the Unruh effect for interacting ultracold fermions in optical lattices by a sudden quench resulting in vacuum acceleration with varying interactions strengths in the real temperature background. We observe the inversion of statistics for the low lying excitations in the Wightman function as a result of competition between the spacetime and BCS Bogoliubov transformations. This paper opens up new perspectives for simulators of quantum gravity.Comment: close to the published versio

    Tensor Networks for Lattice Gauge Theories with continuous groups

    Get PDF
    We discuss how to formulate lattice gauge theories in the Tensor Network language. In this way we obtain both a consistent truncation scheme of the Kogut-Susskind lattice gauge theories and a Tensor Network variational ansatz for gauge invariant states that can be used in actual numerical computation. Our construction is also applied to the simplest realization of the quantum link models/gauge magnets and provides a clear way to understand their microscopic relation with Kogut-Susskind lattice gauge theories. We also introduce a new set of gauge invariant operators that modify continuously Rokshar-Kivelson wave functions and can be used to extend the phase diagram of known models. As an example we characterize the transition between the deconfined phase of the Z2Z_2 lattice gauge theory and the Rokshar-Kivelson point of the U(1) gauge magnet in 2D in terms of entanglement entropy. The topological entropy serves as an order parameter for the transition but not the Schmidt gap.Comment: 27 pages, 25 figures, 2nd version the same as the published versio

    Quantum simulation of non-trivial topology

    Get PDF
    We propose several designs to simulate quantum many-body systems in manifolds with a non-trivial topology. The key idea is to create a synthetic lattice combining real-space and internal degrees of freedom via a suitable use of induced hoppings. The simplest example is the conversion of an open spin-ladder into a closed spin-chain with arbitrary boundary conditions. Further exploitation of the idea leads to the conversion of open chains with internal degrees of freedom into artificial tori and M\"obius strips of different kinds. We show that in synthetic lattices the Hubbard model on sharp and scalable manifolds with non-Euclidean topologies may be realized. We provide a few examples of the effect that a change of topology can have on quantum systems amenable to simulation, both at the single-particle and at the many-body level.Comment: 12 pages, 15 figure

    Measuring Chern numbers in Hofstadter strips

    Get PDF
    Topologically non-trivial Hamiltonians with periodic boundary conditions are characterized by strictly quantized invariants. Open questions and fundamental challenges concern their existence, and the possibility of measuring them in systems with open boundary conditions and limited spatial extension. Here, we consider transport in Hofstadter strips, that is, two-dimensional lattices pierced by a uniform magnetic flux which extend over few sites in one of the spatial dimensions. As we show, an atomic wavepacket exhibits a transverse displacement under the action of a weak constant force. After one Bloch oscillation, this displacement approaches the quantized Chern number of the periodic system in the limit of vanishing tunneling along the transverse direction. We further demonstrate that this scheme is able to map out the Chern number of ground and excited bands, and we investigate the robustness of the method in presence of both disorder and harmonic trapping. Our results prove that topological invariants can be measured in Hofstadter strips with open boundary conditions and as few as three sites along one direction.Comment: v1: 17 pages, 10 figures; v2: minor changes, reference added, SciPost style, 26 pages, 10 figures; v3: published versio
    corecore