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Abstract

We propose several designs to simulate quantum many-body systems in manifolds with a non-trivial
topology. The key idea is to create a synthetic lattice combining real-space and internal degrees of
freedom via a suitable use of induced hoppings. The simplest example is the conversion of an open
spin-ladder into a closed spin-chain with arbitrary boundary conditions. Further exploitation of the
idealeads to the conversion of open chains with internal degrees of freedom into artificial tori and
Mobius strips of different kinds. We show that in synthetic lattices the Hubbard model on sharp and
scalable manifolds with non-Euclidean topologies may be realized. We provide a few examples of the
effect that a change of topology can have on quantum systems amenable to simulation, both at the
single-particle and at the many-body level.

1. Introduction

The research field of quantum simulation explores, among other goals, the possibility of using well-controlled
quantum systems to simulate the behavior of other quantum systems whose dynamics escapes standard
theoretical or experimental approaches. As a relevant example, quantum simulators have been used to
successfully analyse condensed matter phenomena [1]. Through synthetic gauge fields [2], more ambitious and
multidisciplinary problems can be addressed, such as the determination of the phase diagram of (lattice) gauge
theories [3-8]. This theoretical progress is supported by vigorous experimental developments with a growing
number of platforms available for quantum simulation like cold neutral atoms and molecules [9], trapped ions
[10], photonic crystals [11], NV-centers [12], and superconducting qubits [13].

On a different line of research, topological models have attracted great interest as well. Topology is a key
feature to understand many physical phenomena, such as the quantum Hall and quantum spin-Hall effects [14],
quantization of Dirac monopole charge [15], charge fractionalization and non-perturbative properties of vacua
of Yang-Mills theories [ 16—19], etc. Topology also plays an essential role in engineering novel states of ultracold
matter, such as topological insulators [20]. Notably, topological protection has been considered as a resource for
quantum computation [21]. Nonetheless, non-trivial topology is not easy to implement in practical systems. For
instance, there is no obvious way to manipulate a 2D condensed matter system to be topologically connected as
on a higher genus Riemann surface. Experimental limitations are thus an obstacle to analyse the effects of non-
trivial topologies on quantum systems.

The reunion of these two topics, namely quantum simulation and topology, is a natural and tantalizing
evolution for both sets of ideas. So far, the focus in quantum simulation has been on topological properties
emerging in infinite systems due to their dynamics, e.g., in the toric code [22—24] or in periodically driven
systems [25—27], and in synthetic quantum Hall [28—40] and quantum spin-Hall [41-45] systems that exhibit
edge states when subjected to open boundary conditions. The search for edge states and other topological
propreties [46—50] includes also theoretical and experimental efforts in understanding Majorana fermions,
since they are produced at the boundaries of some quantum systems [51-53]. But, so far, the simulation of
systems with non-trivial boundary conditions, with the exception of circle/torus geometry (see theory [54-56],
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and experiments [57-63], and references therein), has been very scantily explored (see also [64, 65], which
appeared while this work was in progress).

Geometry and topology have already made their appearance in quantum simulators, specifically in optical
lattices with ultracold atoms. Recently, there have been proposals to simulate quantum many-body physics in
certain types of curved background spacetimes [66], tailoring the hopping amplitudes of the optical lattice.
Moreover, in [67] a protocol was introduced to use the different atomic states as an artificial extra dimension.
This latter proposal plays a key role in our approach to the simulation of quantum matter in different topologies.
In effect, by managing the internal interactions between the internal states, we will show how to turn an open 1D
optical lattice into a system with periodic boundary conditions (PBC), a cylinder, a torus or a Mobius strip. Our
proposal can be engineered also using other platforms and/or may be combined with other techniques.

Such as the ones allowing for well-established toroidal compactifications [68—83], or the speckle potentials
allowing to simulate in a controlled way disorder [84, 85].

The paper is organized as follows. Section 2 presents the general strategy to simulate non-trivial topology on
a quantum system, while the experimental aspects are discussed in section 3. Section 4 is devoted to an analysis of
signatures of non-trivial topological effects, which can be observed in systems amenable to experimental
realization. We end up, in section 5 presenting the conclusions and a discussion of the possibilities for
future work.

2. Artificial topology

The general aim of our work is to build quantum simulators for dynamics in different topologies out of an
optical lattice, which naturally have open boundary conditions. In order to illustrate our strategy let us start with
the simplest paradigmatic example: simulating quantum dynamics on aringi.e., a 1D system with PBC. In
principle, this can be achieved by embedding it into a plane, bending it into a circumference and creating an
effective interaction between the two extremes which is identical to the one in the bulk. Thus, an extra
dimension is required, as well as the possibility of bending the system without altering its dynamical properties.
Both requirements are difficult to meet. Therefore, we shall explore a different possibility, which amounts to
engineering an artificial extra dimension.

For definiteness, let us discuss a bosonic 1D hopping model with L sites whose Hamiltonian is merely
kinetic. Let a; create aboson at site i. The PBC are obtained by connecting the end points with an extra term

I-1
H =- ]Zafa,-ﬂ + fala, |+ he, (1)
i=1
where J,, the closing hopping, should be taken as | = J. The problem of simulating an S topology is tantamount
to generating this closing term which connects both boundaries of the system. There are several generic strategies
to create that term:

e embed the system in a plane and bend it until both boundaries touch, thus reducing the boundary term to an
ordinary bulk term.

o Induce along-range hopping through a medium or an intermediate state.

e Useasynthetic dimension.

This work focuses on the last solution. The introduction of an extra dimension through internal degrees of
freedom was proposed in [67]. Indeed, an open 1D line of L sites, each endowed with M internal states, can be
regarded as an L X M synthetic 2D lattice, see figure 1. In geometric terms, we can think of the internal states as a
fiber opening at each real-space site. The resulting synthetic lattice would be, therefore, a discrete analogue of a
fibre bundle. A generic hopping Hamiltonian for this system can be written as

L-1
H=- ZZ]iTa,o/biT(g)bi(gl) + oo b b7 | + hic, (2)

o,0’ i=1

where J” and J" are sets of vertical and horizontal hoppings, in the synthetic lattice view. The vertical term allows
us to connect any pair of internal states in the same physical site, while the horizontal term allows us to connect
any two internal states in physically neighboring sites.

Figure 2 illustrates the process by which we can convert an open spin chain with M = 2 states per siteinto a
system with PBC. In equation (2), simply set ]if’mf =] 5, and J}, , tobezero in the bulk, but not in the
extremes, i= 1 or i = L, in which case we have a connecting term between the two species: J;, , = J.Ifwe
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L physical sites

M internal states (spins)

1d-chain

Figure 1. Idea of a synthetic lattice: a 1D chain of length L sites with M species is equivalent to a L X M synthetic lattice, once the chain is
dressed with appropriate couplings between species.

Figure 2. Engineering a circumference of 2L lattice sites from a L synthetic lattice that carries M = 2 species. The blue solid links
indicate the hopping along the chain, e.g., the free hopping in a cold-atom implementation, while the two dashed red links are induced
local interactions between the two species, e.g., a Raman coupling between hyperfine levels of atoms. The vertical black ellipses
represent the physical sites in the real 1D-chain occupied by the two species.

introduce [, = 2L virtual particle creation operators, a; = b ]( Yand as 41— i=b }2), j=1,..,L,the
Hamiltonian reads exactly as a 1D-PBC hopping Hamiltonian.

Let us summarize the idea. By inducing appropriate hoppings on the internal degrees of freedom —whether
we call them species, spin values, etc—we can attain effectively higher-dimensional dynamics, giving them a
geometric meaning [67]. This higher dimension can be bent and sewn in different ways, as shown in the previous
example. The simplest application consists on turning an open chain with two species into a closed one with a
single species. It only needs localized control of the transformations between the species at the boundaries of the
open system.

As an additional feature, our synthetic approach allows to control the phases of the induced hoppings. This is
equivalent to inducing a magnetic field piercing the chain and, via a gauge transformation, to create boundary
conditions which interpolate continuously between periodic and anti-periodic ones. In critical 1D spin models a
non-trivial magnetic flux can be regarded as a defect in the associated conformal field theory [86, 87].

The 1D-PBC lattice described above is the basic building block for more interesting 2D models. In the next
sections we will discuss more exotic boundary conditions, such as Mobius strips.

2.1. Assembling cylinder and torus
A cylinder can be understood as a fiber bundle of segments emerging from each point of a circumference. Let us

describe how to create cylindrical synthetic lattice (i.e., aladder with PBC) of size 2L, X L, froma 1D open
chain of L, real sites, with M = 2L, internal states per site. Let aiTj create a particle at site (i, j) of the cylinder. Its

3
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b)  Amp =2 at any chain’s site c)

Amp=1 -

at chain’s extrg \
L itk Amp=1
inear p o
uadratic Zeeman Wﬂms site

splitting
Amp =1 at chain's extrema = S

Figure 3. Engineering a cylinder of basis L, and height L, lattice sites from a L X M syntheticlattice with L = L, /2 and M = 2L, . (a)
L, =2 synthetic cylinder. In a cold atom implementation, the blue solid links indicate the free hopping while the dashed ones are laser
or radio-frequency induced. The dashed red links are the ‘sewing” hoppings G, closing each circle of the cylinder, while the dashed
green ones are the hoppings B,, along its height, connecting the different circles. (b) and (c) Spectroscopical arrangement of the four
internal degrees of freedom in the one-manifold and two-manifold scheme, respectively. The former can be realized by using the
groundstate of atoms F > % like Li, K, Yb, Sr, Er, etc, and requires quadratic Zeeman splitting in order to have J'-coupling (in red)
only between odd-even m-states. The latter requires Earth-alkali like atoms with F > = as 17'Yb, 72Yb, and Srand in this case the
linear splitting is sufficient in order to make the spin accessible by Raman lasers or radio-frequency pulses.

correspondent in the synthetic lattice will be b %~V if i < L, and b5*), _; otherwise. An example with L, =2 is
shown in figure 3.
The Hamiltonian of a free bosonic system on a cylinder can be written as

2L Ly L
H=-] ZZLI&(&I,‘HJ + ai)j+1) + azTLx,jal,j + h.c. (3)
i=1j=1 j=1

which can be mapped to the form (2).Ifi # 1and i # L, we have

]1}:’0’0‘/ = ] 5(;,17’)
]il,/(;,o-’ =] Bo',o'/ > (4)

where B, - isa 2L, X 2L, bulk Hermitian matrix of internal hoppings implementing motion in the transverse
direction of the cylinder

B(i,o" = 6{;,0"12) (5)

i.e., it is always possible to jump between internal states differing by two units. On the extremes, fori=1ori=1,
we have to add a new term

Ii‘,/a,a’ = I Brr,tr’ + I C{r,a’; (6)

where G, , is a closing Hermitian matrix which is responsible for sewing the open edges of the cylinder. Since it
corresponds to a pile of circumferences, the non-zero entries of those matrix are of the form Cy;_, 5;and Cy; 5.
The geometrical meaning of that closing matrix is that each horizontal line bends on itself, without mixing.

The synthetic cylinder we just described can be easily turned into a torus by changing matrix B, ,, with the
introduction of new non-zero terms By ;-1 = Byr,—1,1 = Baar, = Bor, 2 = 1 which sew together the upper and
lower ends of each fiber, see figure 4. This construction makes sense for L, > 3. In other terms, each fiber
becomes a circumference instead of an open segment. However, while the number oflayers, L,, of the cylinder
are limited only by the total number of internal species available, in the case of the torus L, can be further
restricted by the ability of coupling the internal species cyclically (see section 3 for cold atom implementation).

2.2. Mébius strip and twisted torus

The analogy of the synthetic lattice and the fiber bundle, with the internal states playing the role of the fiber, can
be exploited further. We can glue the fibers opening at different sites in a different way, in order to provide a non-
trivial topology to the manifold. For example, by gluing the first and last fibers of a cylinder via a reflection we
can turn it into a non-orientable manifold, a Mébius strip.

4
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Figure 4. Engineering a torus by converting each fiber into a circumference. In (a) we show the L, = 3 synthetic torus. In a cold atom
implementation, the blue solid links indicate the free hopping while the dashed ones are laser or radio-frequency induced. The dashed
red links are unchanged with respect to figure 3(a), while additional green dashes ones are used to glue the basis of the cylinder
connecting the top and bottom circles, and correspond to the additional terms in By, . In (b) we show the spectroscopical
arrangement of the six internal degrees of freedom in the two-manifold scheme requiring F > %, for instance, '7°Yb.

any chain’s site

3

Figure 5. Engineering a Mobius strip by twisting the cylinder. In (a) we show the L, = 2 synthetic strip. In a cold atom implementation,
the blue solid links indicate the free hopping while the dashed ones are laser or radio-frequency induced. The dashed green links and
half of the dashed red links are unchanged with respect to figure 3(a), while the yellow dashed ones are the twisted closing hoppings
connecting different circles, reflecting the change from G, to C2%. In (b) and (c) we see the spectroscopical arrangement of the four
internal degrees of freedom in the one-manifold and two-manifold scheme, respectively. The former can be realized by using the
ground state of atoms F > % like Li, K, Yb, Sr, Er, etc., while the latter requires Earth-alkali like atoms with F > % as 171YDb, 173Yb, and

878r. in both cases, the hyperfine levels are linearly split in order to make them accessible by multiple Raman lasers or radio-frequency
pulses.

Let us discuss in detail the construction of the artificial Mobius strip, a 2L, X L, ladder with twisted
boundary conditions, i.e., site (2L, j) is connected tosite (1, L, + 1 — j). The free Hamiltonian reads

2L =1L, -1 L-1
H = ] Z z a,-Tj(aiH,j + 61,‘,]‘4_1) + 2 azTI«,jal,LyH_j + h.c.. (7)
i=1 j=1 j=1

The corresponding synthetic lattice Hamiltonian corresponds to the general form (2), with the following
choice of hoppings, see figure 5. For sites i # 1and i # L, theyare the same as for the cylinder, equation (4). For
the extremes, one of them should be the same as for the cylinder, say i = L. But i = 1 must be twisted and connect
the different values of the transverse coordinate

]l‘jo',n'/ = ] 6,0’ + ] Co‘n‘ > (8)
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Figure 6. Engineering a twisted torus by wrapping the Mébius strip. Equivalently, a twisted torus can be visualized as a torus cut and
glued with a twist. In (a) we see the L, = 3 synthetic twisted torus. In a cold atom implementation, the blue solid links indicate the free
hopping while the dashed ones are laser or radio-frequency induced. The dashed red links are unchanged with respect to figure 5(a),
while the green dashed ones are used to glue the borders of the Mébius strip. In (b) we show the spectroscopical arrangement of the six

internal degrees of freedom in the two-manifold scheme, which requires F > Jas, for instance, in 173Yb.

where B, , is the bulk matrix, given by equation (5) and the Mébius closing matrix, C %, has non-zero terms
which revert the site ordering of the extra dimension, i.e., connects sites y = jwith y = L, + 1 — j. Therefore,

we get that the non-zero elements of C* have the form C 2]M_ 12(1,+1-5) (and symmetric) and C 2];,42 (1, +17)-1 See

the L, = 2 case exemplified in figure 5, where at site i = 1 the (yellow) hoppings glue the two different circles.

Of course, this scheme presents the handicap that the size of the transverse direction is not scalable, i.e., it is
limited by the number of internal species available and by our ability to couple them. But, as we will see in the
next sections, already with L, = 2 we can obtain substantial differences between the cylinder and the Mébius
strip.

We can combine the schemes for the Mébius strip and the torus in order to build a twisted torus. The real
space Hamiltonian corresponds to (7) with the extra term connecting the y=1and y = L, values of all fibers:

] 212:‘1 aia; 1, + h.c.. This mapsinto J Zfi . bV bi(ﬂ”’ ) + b; (o) b{? for the synthetic lattice Hamiltonian.
See figure 6 for an illustration.

More general boundary conditions, which do not correspond to a 2D manifold, are related to the application
of a general unitary matrix of hoppings between sites at i = 2L, andi= 1, which can be parametrized as

L}'
Z U alex,jal,j/ + h.c, 9)
Jrj'=1

where U € U (L, ). If Uis the identity matrix, we obtain the cylinder. Let us now consider the case L, = 2. The
Mabius strip corresponds to the U = ¢; case, which has determinant —1. Therefore, can not be connected
continuously to the identity matrix. On the other hand, one can reach a pseudo-Mébius strip using a rotation of
nUy,=-U=1

3. Cold atom implementation

In this section, we show how the artificial topologies described previously can be made concrete, for instance, in
a cold atom set-up. The basic features that allow to realize the abstract construction of section 2 in a cold atom
system are the following:

o thesyntheticlattice is obtained by loading in a 1D (spin-independent) optical lattice the atoms, whose
hyperfine states, belonging to a unique or few hyperfine manifolds, provide internal species which form the
synthetic dimension;

e the hopping term ],-f'a,t,/ of (2) is the free hopping of atoms in the 1D optical lattice and is naturally spin-

independent, ]ffg,l,f =] 85,0'>as assumed in the construction of Hamiltonians (3) and (7) and their periodic
completions;
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o thehoppingterm J;, . isinduced and tailored by laser and radiofrequency couplings which are local in the
real-space picture, i.e., are acting on a single site of the 1D chain.

A similar dictionary can be obtained for other platforms. For instance, in the spirit of [67], a synthetic
dimension can be achieved also in photonic crystals as in [88, 89], by changing the connectivity of the lattice.

Itis worth to notice that, while the real spatial dimension is virtually ‘unlimited’ (or better scaled up to order
10* lattices sites), the synthetic dimension is limited always by the number of atomic internal states available,
which is up to 10 for standard atoms like “°K or 87Sr [90], but can be up to 20 in '¢”Er [91], if just one hyperfine
manifold is taken into account. However, by considering more than one hyperfine manifold simultaneously or
ultracold molecules, see e.g., [92], this number can be further increased. A limited synthetic dimension
translates into a limited transverse dimension of the artificial topology.

Let us start by discussing how to implement the building block of our construction, a (spinless) periodic
chain from a (spinful) open one. In cold atoms, model (2) applied to create PBC can be realized for instance by
loading atoms with at least two hyperfine (almost degenerate) ground states (F > %) in a spin-independent
quasi-1D optical lattice of L sites. The free tunneling provides the terms in T, while the terms in J* can be created
using Rabi oscillations between the hyperfine states, induced by Raman lasers focused on sites 1 and L,
respectively. Thus, the synthetic approach we are proposing is essentially local, since the different species are
physically at the same site. Notice the scalability of the procedure: we can build PBC 1D systems of any size 2L, if
we can build an associated open system with L sites and M = 2 internal states.

3.1. Cylinder and torus

Let us extend the above construction to the simulation of a cylinder by layering many circles together as
explained in section 2.1. It is easy to realize that the Hamiltonian of (3) can be implemented with up to two-
photon transitions. Indeed, the most direct arrangement of the internal degrees of freedom ¢ is in terms of
hyperfine states within a unique hyperfine manifold F > #, e.g. o) = b7 |0) = |F, mp = m + o). For
this ordering of the spins, the synthetic sewing coupling G, applied at real-space sites i = 1 and i = L requires
Amyp = 1, while the synthetic transverse coupling By, requires Amy = 2 for any L,. Thus, the only limitation in
L, is given by the number of available internal states. It is worth to notice that the coupling C,,- applies only
alternatively, i.e., it connects only odd and even spin values. This implies that the hyperfine states have to be
spectroscopically distinguishable, for instance, through a quadratic Zeeman splitting.

The spin arrangement considered above is not the only possible one. Furthermore, two or more (meta)stable
hypermanifolds can be considered. Such a construction is particularly favorable in Earth-alkali like atoms like
YD (seee.g., [93-96]) where the optically connected Sandthe °R, may be used. In this case, a convenient
arrangement is to place odd (even) ¢’s in the first (second) manifold, i.e.

[26) = b7 |0) = |I, F, mp = 1 + o), (20 + 1) = b2°*VT|0) = |II, F, mp = 11 + ¢)). Thus, the
Hamiltonian (3) involves in this scheme just Amp = 1transitions. As further discussed below (see section 3.3),
the two-manifold construction allows for a richer interaction pattern than single-manifold one. Both schemes
are depicted in figure 3.

Let us now turn to the implementation of a torus geometry. As described in section 2.1, further couplings are
needed, which connect the top and the bottom circles. In the synthetic-lattice basis, this is equivalent to
connecting the last of the odd (even) spins with the first odd (even) one, for any real-space site. Such a
construction makes sense when L, is at least 3, the case whose implementation is detailed in figure 4. For
simplicity, let us focus on the two-manifold construction. Here, the additional coupling requires just Amyp = 2
and, similarly to the PBC engineered in [35], can be achieved for instance via a 3-photon transition. For generic
L,, the needed transition has Amy = L, — 1.

3.2.Moébius and twisted torus
Let us now discuss the cold atom implementation of a Mébius strip. As explained in section 2.2, we can get a
Maobius from the cylinder by replacing the synthetic coupling C,,, at (e.g.) real-space site i = 1 with the coupling
CM,. This is equivalent to connecting the internal states |¢ = 2I) with |2) (L, + 1 — I),and the states
|l =21 — 1)with |2 (L, =D +1) forl=1,.., L,.Itis immediate to realize that for any arrangement of the
internal states as hyperfine states (both in the one- and two-manifold scenarios) this implies that the maximum
Amy needed to engineer C! scales with L,. For instance, in the two-manifold scheme with the arrangement for
the o’s described above, the maximal Amp is exactly L, see figure 5(c). Thus, the feasible transverse dimension
of the strip is technically limited, let us say to L, = 4, value which requires at least four-photon transitions.

The step to the implementation of a twisted torus is quite easy and requires the addition of a coupling with
Amp = L, — 1,asdescribed above.
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3.3.Interactions

The constructions we have presented produced the kinetic terms of the Hamiltonians, which are indeed the
relevant part for the connectivity of the model (including boundary conditions) and, thus, for the hoppings.
Cold atom implementation provides a natural way of including interactions. In the synthetic-lattice picture,
ordinary on-site interactions due to collisions of atoms with different spins appear as long-ranged.

The pattern of such long-range interactions can be partially controlled. For instance, it is potentially very
different for in the (i) one-manifold and in the (ii) two-manifold schemes. Interactions between hyperfine states
of the same manifold may change a lot from atom to atom, but the non-spin-changing ones are in general all of
the same order of magnitude and, for Earth-alkali atoms, they are equal. The spin-changing ones are naturally
suppressed (p-wave) and can be enhanced without inducing too high three-body losses by using optical
Feshbach resonances [97-99]. An alternative route is given by Raman-induced interactions near s-wave
Feshbach resonance [100-102]. Collisions between atoms in different manifolds are not affected by such
constraint but are in general lossy.

Let us start discussing in details the case (i) with the assumption of SU (2F + 1)-symmetric interactions
H = %Z] fj (fj — 1), whereftj = 37 _ 5, b ]("” b ](") is the total occupation on site j of the physical 1D-chain.
As the interaction is invariant under reordering of the spins, the final Hubbard model on the synthetic cylinder
and the Mobius strip looks the same for any of the arrangements chosen to represent the o in terms of mp.
Indeed, supposing that we selectively fill only the spin-states needed i.e., 2L, the local occupation at site j of the
chain becomes the sum oflocal occupations at sites r=jand ' = 2L, + 1 — j of the synthetic lattice,

fj = ZzLi . (a;f 10 + a;’l a,.1). Thus, the interactions will be full range in the transverse direction at fixed rand
for pairs (r, 2L, + 1 — 1), H; = %Zfi"l (N, (N, = 1) + N, I\AIZLX +1_,>, where N, = ZzLil a;f,a,,l .

The situation is quite different in scenario (ii), even under the assumption that the interactions are SU
(2F + 1)-invariant in each hyperfine manifold. To be definite let us consider Earth-alkali like atoms and assume
that interactions are negligible in each hyperfine manifold with respect to the inter-manifold ones, which we
model to be just density—density. The final Hi-term in the synthetic lattice is strongly dependent on the chosen
spin arrangement. For instance, we can engineer a model where only the term %zr N, N, I, +1—r appears.

4. Topology signatures

Let us discuss possible proof-of-principle experimental signatures of the topology of the underlying manifold
showing up in quantum many-body dynamics which are amenable to experimental observation in our synthetic
lattices. This section is not intended as a review of the broad subject of topological effects on quantum systems
and has no relation to topological quantum field theory [103].

We start by discussing the simplest paradigmatic example of a line with two species which can be designed to
mimic a single species Hamiltonian on a circumference, as described in section 2. In order to illustrate this idea
in a simple way, let us consider the following Hamiltonian for a double spin chain of length L, with tunable
connecting terms at the boundaries:

-1

— X X z

H= 20'1',10i+1,1 +4 ZLUi,l
i=1 i=1

L-1 L
X X zZ
+ zﬁi,zﬁm,z + 4 261',2
i=1 i=1
X X X X
+ ]161’161)2 + ]L UL,laL)z, (10)

where ofm denotes the kth component of the spin on site i, rung m. The two closing interactions J; and J; are
responsible for turning the two open chains into a single one on a circumference. As a consequence, boundary
conditions are dictated by these coefficients. A signature of the artificial boundary conditions can be measured
by the correlation between spins on different chains at aboundary, namely:

B= <al’flo'ﬁ2> - <01’f1><0ﬁ2>. (11)

Observable B should be zero for disconnected chains. Its value for fixed J; = land J = J; € [—1, 1]isshownin
figure 7 for L=4and A = 1. Notice that ] =1 corresponds to the PBC case, which maximally entangles both
chains and gives the highest correlator. For J = 0, we obtain a single open BC chain. More interestingly, for
J = —1, the twist in the boundary condition induces a perfect cancellation in the correlator. This effect is, indeed,
ascalable signature of the non-triviality of the topological effects.

Nonetheless, realistic simulations should model the underlying geometry by tuning the hoppings of
fermions or bosons. We shall now address such cases, looking for both single-particle and interacting signatures.
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Figure 7. Two four-spin Ising chains can be turned into a single chain of eight spins by tuning the boundary couplings, as shown in
equation (11). The plot shows the correlation of spins of each species at the different boundaries, B, as a function of the coupling
L € [-1, 1],for ; = 2 = 1. Note the cancellation of correlations in the case of an artificially frustrated boundary.

Figure 8. Hofstadter-like single-particle spectrum of a 1D system with L = 40 sites under a continuous change in the boundary

conditions, as in equation (1), with . = e'. The X-axis is labeled by the phase ¢ € [0, 2], and color corresponds to eigenvalue
index.

4.1. Single-particle signatures

A natural single-particle playground where we can observe the effect of the topology is to consider synthetic
magnetic fluxes, which boil down to hoppings with non-trivial phases. In our synthetic lattice it is very easy to
control such phases, in particular to make them linearly dependent with the position on the chain if the synthetic
links are induced through Raman lasers.

Let us start with a 1D Hamiltonian with PBC, as in equation (1), either for spinless fermions or bosons, with
anarbitrary closing phase J, = e/, representing a magnetic flux. Its single-particle spectrum, as a function of
¢ € [0, 2x]is shown in figure 8. Thus, the left and right extremes are PBC, while the center corresponds to anti-
periodic ones. Notice that the gap of a fermionic system at half-filling will evolve continuously, presenting a
maximum at ¢ = . Of course, this gap scales as L™}, but for a fixed value of L the topological signature can be
clearly observed.

The more involved case of a 2-rung ladder is shown in figure 9. The upper panels show the single-particle
spectrum for a free Hamiltonian either for spinless fermions or bosons, such as equation (3) with L, = 2. The
closing link between the two extremes can be chosen to be a generic unitary matrix, as shown in equation (9). In
all cases we have selected a one-parameter family of unitary matrices with special properties. Thus, in the left
panel of figure 9 it is a rotation of angle ¢:
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Figure 9. Hofstadter-like single-particle spectra of a two-rung ladder with L, = 40 with Hamiltonian (3) where the extremes are joined
by different unitary hopping matrices, all of them parametrized by a phase ¢p € [—x, 7). Upper-left panel: cylindrical boundary
conditions, given by equation (12), for ¢p = 0 the system is topologically a cylinder, the determinant is always +1. Upper-central
panel: Mobius boundary conditions, given by equation (13), for ¢p = 0 the system is a Mobius band, the determinant is always —1.
Upper-right: mixed boundary conditions, given by equation (14), for ¢ = 0 the system is a cylinder while for ¢ = 07/2 itis a Mobius
band. Although the three spectra bear strong similarities, they can be distinguished experimentally. The lower panel shows the gap ofa
fermionic system at half filling for the three cases. Not that this is not an insulating bulk gap, as it is computed for a fixed value of L,.

(12)

Uni(f) = (cos ¢ —sin ¢)’

sin¢ cos ¢

where the +1 stands for the value of the determinant. Thus, for ¢ = 0 we have U, (0) = I, the identity matrix,
which implies cylindrical boundary conditions. Meanwhile, for the central panel we have used a different one-
parameter family:

(13)

Uo () =(sin¢ cosqﬁ)'

cos ¢ —sin ¢

Although those transformations are also unitary, they all have determinant —1. For ¢» = 0 we obtain
U_1(0) = &, which denotes a Mébius strip. Notice that the single-particle spectrum is slightly different in both
cases, and thus the energy gap at half-filling, shown in the lower panel of figure 9, constitutes a clear topological
signature, even if it reduces as L, increases. Remarkably, the Mobius ground state is exactly degenerate, since the
gap is exactly zero.

Even more, our synthetic construction allows to smoothly interpolate between the two by consideringa U
matrix of the form:

cos ¢p —sin p e

Upi—-1(@) = .
e sing cos ¢ e¥

(14)

this hopping matrix is also unitary, but its determinant is e%%. For ¢p = 0itis +1, and we have the cylinder, while
for ¢ = #/2 itbecomes —1, and we obtain the M6bius strip. The single-particle spectrum of this L, X 2 ladder is
shown in the third panel of figure 9. Notice that the gap vanishes for ¢ = 7/2, since that point corresponds to a
Mobius band.
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Figure 10. Ground state particle-number fluctuations for the Bose—Hubbard model of equation (15) at half filling, defined ona 2D
lattice with periodic boundary conditions in both directions—a torus—and on a 2D lattice with the boundary conditions of a Klein
bottle, computed via exact diagonalization. The results are for a 4 x 4 lattice. Similarly to the results for the Mobius band, the ground
state in twisted boundary conditions seems to favor larger particle-number fluctuations at intermediate values of J/U. The
computation has been done with small disorder in y to remove the degeneracy at ] = 0, as the two complementary checkerboard
coverings of the lattice are ground states.

All these studies show that the magnetic single-particle behavior is sensitive to the orientability of the
underlying lattice. If the lattice is topologically equivalent to a cylinder and orientable, a constant magnetic field
piercing the surface induces steady counter-propagating currents on each edge, which are called edge states.
Their topological nature reflects on their robustness under local perturbations. If the lattice is not orientable,
intuition dictates that the current cannot form as there is no notion of normal to the lattice, i.e., of sign of the
magnetic flux and thus of chirality of the currents. We can check our intuition by considering the synthetic
cylinder and Mébius strip as examples of orientable and no-orientable surface with sharp boundaries,
respectively.

4.2. Interacting signatures
Quantum simulators are not restricted to the study of free systems. Interactions can typically be tailored to a
certain extent. Our generic Hamiltonian can be written as

H = Hg + UZni n; — Zﬂi n;, (15)
(i) i

where Hy is the kinetic Hamiltonian described in equation (2), and Uis the strength of the nearest-neighbor
interaction, y; is alocal chemical potential and ;is the local particle number. The sum in the second term is over
nearest neighbors of a certain adjacency structure, which need not be the same as the one employed for the
kinetic term. We take y; to be slightly random, in order to remove exact degeneracy in the ground state. The
topology of the underlying lattice are totally encoded in the kinetic Hamiltonian Hy, which is affected by a global
hopping constant J.

Let us start by considering a bosonic system with Hamiltonian (15) and focus on the local particle-number
fluctuations in the ground state, 6% = Y, ((n*) — (m; ) / N, where Nis the total particle number. It can be
employed to distinguish the different phases. Mean-field calculations cannot distinguish between different
topologies, since they are local in character so, a fortiori, it will give the same estimate for o2 for all boundary
conditions. Using exact diagonalization, on the other hand, different topologies can be told apart by inspecting
the behavior of 6% as a function of J/U. Foralarge J/U the bosons are in a superfluid state with large particle-
number fluctuations, since each particle is delocalized over the whole lattice. For small J/U the bosons are
localized in a checkerboard pattern and the particle-number fluctuations are small.

We consider different boundary conditions for compact lattices (torus and Klein bottle, which is a Mébius
strip with its boundariesglued together) and open lattices (cylinder and Mobius strip) for different sizes.

In figure 10 we plot 62 for the ground state of the Bose~Hubbard model on a torus and on a Klein bottle. The
data shows that ¢ can tell the different boundary conditions apart in this case for intermediate values of J/U. In
figure 11 we plot 6% as a function of /U for the normal strip and the Mébius strip for different strip lengths. As
expected, in the limits J/U — 0 andlarge J/U the ground state has the same boson number fluctuations, which
is explained by the fact that in both limits the ground state is a product state in the site basis [ 104]. In the latter
limit this is not exactly the case due to finite size effects. The data shows that for intermediate values of J/U,
where the ground state is entangled, ? is sensitive to the different boundary conditions. Despite the fact that the
dependece of physical quantities on the boundary conditions may be construed as finite-size effect, in a large
system with N lattice sites the effects of the different boundary conditions can be made to be as important as for
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Figure 11. Particle-number fluctuations in the ground state of the Bose-Hubbard model of equation (15) at halffilling defined ona
strip with periodic and M6bius boundary conditions computed with exact diagonalization. The results are for strips 4, 6 and 8 sites
long. For large interactions compared to the hopping parameter the ground state presents larger particle-number fluctuations for
twisted boundary conditions than for regular ones. The computation has been done with small disorder in ¢ to remove spurious
degeneracy.
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Figure 12. Representation of the ground state and first excited state of the fermionic Hubbard model (16) on a cylinder and a Mbius
strip of size L, = 6 and L, =2, with repulsion U only taking place vertically and equal to the hopping rate J. The color code is marked at
the rightside colorbar. The color of each node represents the expected value of (#; ). The color of the curved links represent the

density—density correlator, {#; n; ) — (r; ) (n; ). The dashed lines are the correlators (af a; ), normalized tobein [—1, 1]to share the
same color code.

small systems by rescaling the links between boundariesas | — J N, thatis, ] times the number of twisted links
modulo a factor of order one.

Let us now consider a fermionic system with two species per site and on-site repulsion making up a synthetic
lattice described by a Hamiltonian of the form (15):

L,
H= HK + UZni(l)ni(z) + h.C., (16)

i=1

where n? stands for the occupation operator on site i of the jth rung. The topology of the underlying manifold
plays a substantial role on the low energy physics of Hamiltonian (16). On a cylinder, the dynamics is
characterized by the independent motion of particles on both rungs, while on the Mobius band the ladder
presents a crossing between them, where the species transmute. Thus, both rungs become a unique circuit, thus
changing dramatically the dynamics.

Some results are shown graphically in figure 12 and L, = 6 and U =J. From top to bottom we see panels (a)
and (b), which depict the ground state and first excited state for the cylinder, and panels (c) and (d) which show
the corresponding Mobius states. The color of the circles represent the density, (#; ), while the colored arcs
represent the density—density correlator: (n; ;) — (n; ) (n; ). The dashed lines represent the hopping correlator,

(a] a; ), red being positive and blue negative in all cases.

The ground state of the cylinder, panel (a) of figure 12 is characterized by a homogeneous density and
density—density correlators. The first excited state, shown in figure (b) is doubly degenerate, and it is obtained by
adding one more particle at the upper species. Particles never move between species, as shown in the null vertical
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hopping correlators. The physical picture can be described as follows. The particles move along their horizontal
lines in counter-phase, i.e., with highly negative density—density correlator between the two lines. This does not
lead to frustration because L, is even and the lanes never cross.

Panels (c) and (d) show the situation for the Mobius topology. The ground state is degenerate, and both
states are depicted there. The local density now shows a checkered pattern, and also the density—density
correlators. The vertical hopping correlators show also an interesting pattern, alternating positive and negative
values. The physical picture is as follows. The lane crossing induced by the topology frustrates the homogeneous
ground state found in cylindrical topology. The two lanes have become one, and the only possibility to reduce
vertical repulsion is to freeze the system into a charge-density wave. Particles can not move as fast as they would
like to reduce their kinetic energy, which is an analogue of a traffic jam. That is the reason for the lane changing
correlators.

This results combines remarkably well with the information represented in figure 12, showing that the Mott
transition takes place at different values of the J/U parameter for different topologies, independently of the
system size. This effect is related in a non-trivial way to frustration and does not scale with the system size.

5. Conclusions

We have shown that non-trivial topologies can be simulated by a combination of two techniques, namely the use
of several species at every spatial degrees of freedom and the generation of couplings among these species only at
the boundaries of the system. In other words, species work as an extra dimension that allows for the generation
of topological transformations from localized interactions.

In particular we have presented explicit proposals for the realization of the following geometries:

e acircle,

e acylinder,

e atorus,

e aMobius strip,

e atwisted torus.

We have discussed different possibilities of experimental realization of the proposed schemes, extending
significantly the ideas of [67]. Finally, we have presented several signatures of the underlying lattice topology
both on free and interacting systems. These examples involve synthetic gauge fields and synthetic dimension,
including:

e atwo-species open Ising chain with localized interactions among them can be converted in a double-length
single-species chain with a synthetic magnetic field.

o Hofstadter-like spectra can be obtained for a circle, a cylinder and a Mobius strip.

e Hubbard systems of moderate size can be engineered on a torus, a Klein bottle, a cylinder and a M6bius strip.

It is worth noticing that by switching on the hopping terms connecting the sites at the bases of the cylinder
among themselves, we can also simulate a lattice with the topology of a two-sphere. In the cold atom
construction this amounts to closing off the top and bottom openings of the cylinder, thus creating a compact
surface with no holes.

Our findings open paths to further investigations of both free and weakly interacting, as well as strongly
correlated systems in optical lattices with non-trivial topology. Combining such lattice geometries with synthetic
gauge fields leads to various spectacular effects that are within the reach of current experiments.
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