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Abstract
Wepropose several designs to simulate quantummany-body systems inmanifolds with a non-trivial
topology. The key idea is to create a synthetic lattice combining real-space and internal degrees of
freedomvia a suitable use of induced hoppings. The simplest example is the conversion of an open
spin-ladder into a closed spin-chainwith arbitrary boundary conditions. Further exploitation of the
idea leads to the conversion of open chainswith internal degrees of freedom into artificial tori and
Möbius strips of different kinds.We show that in synthetic lattices theHubbardmodel on sharp and
scalablemanifolds with non-Euclidean topologiesmay be realized.We provide a few examples of the
effect that a change of topology can have on quantum systems amenable to simulation, both at the
single-particle and at themany-body level.

1. Introduction

The researchfield of quantum simulation explores, among other goals, the possibility of usingwell-controlled
quantum systems to simulate the behavior of other quantum systemswhose dynamics escapes standard
theoretical or experimental approaches. As a relevant example, quantum simulators have been used to
successfully analyse condensedmatter phenomena [1]. Through synthetic gaugefields [2],more ambitious and
multidisciplinary problems can be addressed, such as the determination of the phase diagramof (lattice) gauge
theories [3–8]. This theoretical progress is supported by vigorous experimental developments with a growing
number of platforms available for quantum simulation like cold neutral atoms andmolecules [9], trapped ions
[10], photonic crystals [11], NV-centers [12], and superconducting qubits [13].

On a different line of research, topologicalmodels have attracted great interest as well. Topology is a key
feature to understandmany physical phenomena, such as the quantumHall and quantum spin-Hall effects [14],
quantization ofDiracmonopole charge [15], charge fractionalization and non-perturbative properties of vacua
of Yang-Mills theories [16–19], etc. Topology also plays an essential role in engineering novel states of ultracold
matter, such as topological insulators [20]. Notably, topological protection has been considered as a resource for
quantum computation [21].Nonetheless, non-trivial topology is not easy to implement in practical systems. For
instance, there is no obviousway tomanipulate a 2D condensedmatter system to be topologically connected as
on a higher genus Riemann surface. Experimental limitations are thus an obstacle to analyse the effects of non-
trivial topologies on quantum systems.

The reunion of these two topics, namely quantum simulation and topology, is a natural and tantalizing
evolution for both sets of ideas. So far, the focus in quantum simulation has been on topological properties
emerging in infinite systems due to their dynamics, e.g., in the toric code [22–24] or in periodically driven
systems [25–27], and in synthetic quantumHall [28–40] and quantum spin-Hall [41–45] systems that exhibit
edge states when subjected to open boundary conditions. The search for edge states and other topological
propreties [46–50] includes also theoretical and experimental efforts in understandingMajorana fermions,
since they are produced at the boundaries of some quantum systems [51–53]. But, so far, the simulation of
systemswith non-trivial boundary conditions, with the exception of circle/torus geometry (see theory [54–56],
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and experiments [57–63], and references therein), has been very scantily explored (see also [64, 65], which
appearedwhile this workwas in progress).

Geometry and topology have alreadymade their appearance in quantum simulators, specifically in optical
lattices with ultracold atoms. Recently, there have been proposals to simulate quantummany-body physics in
certain types of curved background spacetimes [66], tailoring the hopping amplitudes of the optical lattice.
Moreover, in [67] a protocol was introduced to use the different atomic states as an artificial extra dimension.
This latter proposal plays a key role in our approach to the simulation of quantummatter in different topologies.
In effect, bymanaging the internal interactions between the internal states, wewill showhow to turn an open 1D
optical lattice into a systemwith periodic boundary conditions (PBC), a cylinder, a torus or aMöbius strip. Our
proposal can be engineered also using other platforms and/ormay be combinedwith other techniques.

Such as the ones allowing forwell-established toroidal compactifications [68–83], or the speckle potentials
allowing to simulate in a controlledway disorder [84, 85].

The paper is organized as follows. Section 2 presents the general strategy to simulate non-trivial topology on
a quantum system, while the experimental aspects are discussed in section 3. Section 4 is devoted to an analysis of
signatures of non-trivial topological effects, which can be observed in systems amenable to experimental
realization.We end up, in section 5 presenting the conclusions and a discussion of the possibilities for
futurework.

2. Artificial topology

The general aim of ourwork is to build quantum simulators for dynamics in different topologies out of an
optical lattice, which naturally have open boundary conditions. In order to illustrate our strategy let us start with
the simplest paradigmatic example: simulating quantumdynamics on a ring i.e., a 1D systemwith PBC. In
principle, this can be achieved by embedding it into a plane, bending it into a circumference and creating an
effective interaction between the two extremeswhich is identical to the one in the bulk. Thus, an extra
dimension is required, as well as the possibility of bending the systemwithout altering its dynamical properties.
Both requirements are difficult tomeet. Therefore, we shall explore a different possibility, which amounts to
engineering an artificial extra dimension.

For definiteness, let us discuss a bosonic 1Dhoppingmodel with L sites whoseHamiltonian ismerely
kinetic. Let ai

† create a boson at site i. The PBC are obtained by connecting the end points with an extra term

∑= − + +
=

−

+H J a a J a a h.c., (1)c

i

L

i i c L

1

1
†

1 1
†

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where Jc, the closing hopping, should be taken as =J J .c The problemof simulating an S1 topology is tantamount
to generating this closing termwhich connects both boundaries of the system. There are several generic strategies
to create that term:

• embed the system in a plane and bend it until both boundaries touch, thus reducing the boundary term to an
ordinary bulk term.

• Induce a long-range hopping through amediumor an intermediate state.

• Use a synthetic dimension.

This work focuses on the last solution. The introduction of an extra dimension through internal degrees of
freedomwas proposed in [67]. Indeed, an open 1D line of L sites, each endowedwithM internal states, can be
regarded as an L×M synthetic 2D lattice, see figure 1. In geometric terms, we can think of the internal states as a
fiber opening at each real-space site. The resulting synthetic lattice would be, therefore, a discrete analogue of a
fibre bundle. A generic hoppingHamiltonian for this system can bewritten as

∑∑= − + +
σ σ

σ σ
σ σ
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where Jv and Jh are sets of vertical and horizontal hoppings, in the synthetic lattice view. The vertical term allows
us to connect any pair of internal states in the same physical site, while the horizontal term allows us to connect
any two internal states in physically neighboring sites.

Figure 2 illustrates the process bywhichwe can convert an open spin chainwithM=2 states per site into a
systemwith PBC. In equation (2), simply set δ=σ σ σ σ′ ′J Ji

h
, , , and σ σ′Ji

v
, , to be zero in the bulk, but not in the

extremes, i=1 or i= L, inwhich case we have a connecting termbetween the two species: =J Ji
v
,1,2 . If we
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introduce =l L2x virtual particle creation operators, =a bj j
(1) and =+ −a bL j j2 1

(2), =j L1 ,..., , the

Hamiltonian reads exactly as a 1D-PBChoppingHamiltonian.
Let us summarize the idea. By inducing appropriate hoppings on the internal degrees of freedom—whether

we call them species, spin values, etc—we can attain effectively higher-dimensional dynamics, giving them a
geometricmeaning [67]. This higher dimension can be bent and sewn in different ways, as shown in the previous
example. The simplest application consists on turning an open chainwith two species into a closed onewith a
single species. It only needs localized control of the transformations between the species at the boundaries of the
open system.

As an additional feature, our synthetic approach allows to control the phases of the induced hoppings. This is
equivalent to inducing amagnetic field piercing the chain and, via a gauge transformation, to create boundary
conditionswhich interpolate continuously between periodic and anti-periodic ones. In critical 1D spinmodels a
non-trivialmagnetic flux can be regarded as a defect in the associated conformal field theory [86, 87].

The 1D-PBC lattice described above is the basic building block formore interesting 2Dmodels. In the next
sectionswewill discussmore exotic boundary conditions, such asMöbius strips.

2.1. Assembling cylinder and torus
A cylinder can be understood as afiber bundle of segments emerging from each point of a circumference. Let us
describe how to create cylindrical synthetic lattice (i.e., a ladderwith PBC) of size ×L L2 x y from a 1Dopen
chain of Lx real sites, with =M L2 y internal states per site. Let ai j,

† create a particle at site (i, j) of the cylinder. Its

Figure 1. Idea of a synthetic lattice: a 1D chain of length L sites withM species is equivalent to a L×M synthetic lattice, once the chain is
dressedwith appropriate couplings between species.

Figure 2.Engineering a circumference of L2 lattice sites from a L synthetic lattice that carriesM=2 species. The blue solid links
indicate the hopping along the chain, e.g., the free hopping in a cold-atom implementation, while the two dashed red links are induced
local interactions between the two species, e.g., a Raman coupling between hyperfine levels of atoms. The vertical black ellipses
represent the physical sites in the real 1D-chain occupied by the two species.

3
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correspondent in the synthetic lattice will be −bi
j†(2 1) if ⩽i Lx and + −b L i

j
2 1
†(2 )

x
otherwise. An examplewith Ly=2 is

shown infigure 3.
TheHamiltonian of a free bosonic systemon a cylinder can bewritten as

∑∑ ∑= − + + +
= =

+ +
=

( )H J a a a a a h.c. (3)
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which can bemapped to the form (2). If ≠i 1and ≠i L, we have

δ=
=

σ σ σ σ

σ σ σ σ

′ ′

′ ′

J J

J J B

,

, (4)

i
h

i
v

, , ,

, , ,

where σ σ′B , is a ×L L2 2y y bulkHermitianmatrix of internal hoppings implementingmotion in the transverse
direction of the cylinder

δ=σ σ σ σ′ ′±B , (5), , 2

i.e., it is always possible to jumpbetween internal states differing by two units. On the extremes, for i=1 or i= L,
we have to add a new term

= +σ σ σ σ σ σ′ ′ ′J J B J C , (6)i
v
, , , ,

where σ σ′C , is a closingHermitianmatrix which is responsible for sewing the open edges of the cylinder. Since it
corresponds to a pile of circumferences, the non-zero entries of thosematrix are of the form −C j j2 1,2 and −C j j2 ,2 1.
The geometricalmeaning of that closingmatrix is that each horizontal line bends on itself, withoutmixing.

The synthetic cylinder we just described can be easily turned into a torus by changingmatrix σ σ′B , , with the
introduction of newnon-zero terms = = = =− −B B B B 1L L L L1,2 1 2 1,1 2,2 2 ,2y y y y

which sew together the upper and

lower ends of eachfiber, see figure 4. This constructionmakes sense for ⩾L 3y . In other terms, eachfiber
becomes a circumference instead of an open segment.However, while the number of layers, Ly, of the cylinder
are limited only by the total number of internal species available, in the case of the torus Ly can be further
restricted by the ability of coupling the internal species cyclically (see section 3 for cold atom implementation).

2.2.Möbius strip and twisted torus
The analogy of the synthetic lattice and thefiber bundle, with the internal states playing the role of thefiber, can
be exploited further.We can glue the fibers opening at different sites in a different way, in order to provide a non-
trivial topology to themanifold. For example, by gluing thefirst and lastfibers of a cylinder via a reflectionwe
can turn it into a non-orientablemanifold, aMöbius strip.

Figure 3.Engineering a cylinder of basis Lx and height Ly lattice sites from a L×M synthetic lattice with =L L 2x and =M L2 .y (a)
Ly=2 synthetic cylinder. In a cold atom implementation, the blue solid links indicate the free hoppingwhile the dashed ones are laser
or radio-frequency induced. The dashed red links are the ‘sewing’hoppings σσ′C closing each circle of the cylinder, while the dashed
green ones are the hoppings σσ′B along its height, connecting the different circles. (b) and (c) Spectroscopical arrangement of the four
internal degrees of freedom in the one-manifold and two-manifold scheme, respectively. The former can be realized by using the

groundstate of atoms ⩾F 3

2
like Li, K, Yb, Sr, Er, etc, and requires quadratic Zeeman splitting in order to have J′-coupling (in red)

only between odd-evenmF-states. The latter requires Earth-alkali like atomswith ⩾F 1

2
as 171Yb, 173Yb, and 87Sr and in this case the

linear splitting is sufficient in order tomake the spin accessible byRaman lasers or radio-frequency pulses.
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Let us discuss in detail the construction of the artificialMöbius strip, a ×L L2 x y ladderwith twisted
boundary conditions, i.e., site L j(2 , )x is connected to site + −L j(1, 1 )y . The freeHamiltonian reads

∑ ∑ ∑= + + +
=

−

=

−

+ +
=

−

+ −( )H J a a a a a h.c.. (7)
i

L

j

L

i j i j i j
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L

L j L j

1

2 1

1

1

,
†

1, , 1

1

1

2 ,
†

1, 1

x y y

x y

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The corresponding synthetic latticeHamiltonian corresponds to the general form (2), with the following
choice of hoppings, seefigure 5. For sites ≠i 1and ≠i L, they are the same as for the cylinder, equation (4). For
the extremes, one of them should be the same as for the cylinder, say i= L. But i=1must be twisted and connect
the different values of the transverse coordinate

= +σ σ σ σ σ σ′ ′ ′J J B J C , (8)v M
1, , , ,

Figure 4.Engineering a torus by converting each fiber into a circumference. In (a) we show the Ly=3 synthetic torus. In a cold atom
implementation, the blue solid links indicate the free hoppingwhile the dashed ones are laser or radio-frequency induced. The dashed
red links are unchangedwith respect to figure 3(a), while additional green dashes ones are used to glue the basis of the cylinder
connecting the top and bottom circles, and correspond to the additional terms in σσ′B . In (b) we show the spectroscopical

arrangement of the six internal degrees of freedom in the two-manifold scheme requiring ⩾F 3

2
, for instance, 173Yb.

Figure 5.Engineering aMöbius strip by twisting the cylinder. In (a) we show the Ly=2 synthetic strip. In a cold atom implementation,
the blue solid links indicate the free hoppingwhile the dashed ones are laser or radio-frequency induced. The dashed green links and
half of the dashed red links are unchangedwith respect to figure 3(a), while the yellow dashed ones are the twisted closing hoppings
connecting different circles, reflecting the change from σσ′C to σσ′C M . In (b) and (c)we see the spectroscopical arrangement of the four
internal degrees of freedom in the one-manifold and two-manifold scheme, respectively. The former can be realized by using the

ground state of atoms ⩾F 3

2
like Li, K, Yb, Sr, Er, etc., while the latter requires Earth-alkali like atomswith ⩾F 1

2
as 171Yb, 173Yb, and

87Sr. in both cases, the hyperfine levels are linearly split in order tomake them accessible bymultiple Raman lasers or radio-frequency
pulses.

5

New J. Phys. 17 (2015) 045007 OBoada et al



where σ σ′B , is the bulkmatrix, given by equation (5) and theMöbius closingmatrix, σ σ′C M
, has non-zero terms

which revert the site ordering of the extra dimension, i.e., connects sites y= jwith = + −y L j1y . Therefore,
we get that the non-zero elements ofCMhave the form

− + −( )C
j L j

M
2 1,2 1y

(and symmetric) and
+ − −( )C

j L j
M

2 ,2 1 1y
. See

the Ly=2 case exemplified infigure 5, where at site i=1 the (yellow) hoppings glue the two different circles.
Of course, this scheme presents the handicap that the size of the transverse direction is not scalable , i.e., it is

limited by the number of internal species available and by our ability to couple them. But, as wewill see in the
next sections, alreadywith Ly=2we can obtain substantial differences between the cylinder and theMöbius
strip.

We can combine the schemes for theMöbius strip and the torus in order to build a twisted torus. The real
spaceHamiltonian corresponds to (7)with the extra term connecting the y=1 and =y Ly values of allfibers:

∑ +=J a a h.c.i
L

i i L1
2

,1
†

,
x

y
. Thismaps into ∑ +=

−( ) ( )J b b b bi
L

i i
L

i
L

i1
†(1) 2 1 † 2 (2)x y y for the synthetic latticeHamiltonian.

See figure 6 for an illustration.
More general boundary conditions, which do not correspond to a 2Dmanifold, are related to the application

of a general unitarymatrix of hoppings between sites at =i L2 x and i=1 ,which can be parametrized as

∑ +
′=

′ ′U a a h.c., (9)
j j

L

j j L j j

, 1

, 2 ,
†

1,

y

x

where ∈U U L( )y . IfU is the identitymatrix, we obtain the cylinder. Let us now consider the case Ly=2. The
Möbius strip corresponds to the σ=U x case, which has determinant−1. Therefore, can not be connected
continuously to the identitymatrix. On the other hand, one can reach a pseudo-Möbius strip using a rotation of
π, = − =U U 11,2 2,1 .

3. Cold atom implementation

In this section, we showhow the artificial topologies described previously can bemade concrete, for instance, in
a cold atom set-up. The basic features that allow to realize the abstract construction of section 2 in a cold atom
system are the following:

• the synthetic lattice is obtained by loading in a 1D (spin-independent) optical lattice the atoms, whose
hyperfine states, belonging to a unique or few hyperfinemanifolds, provide internal species which form the
synthetic dimension;

• the hopping term σ σ′Ji
h
, , of (2) is the free hopping of atoms in the 1Doptical lattice and is naturally spin-

independent, δ=σ σ σ σ′ ′J Ji
h
, , , , as assumed in the construction ofHamiltonians (3) and (7) and their periodic

completions;

Figure 6.Engineering a twisted torus bywrapping theMöbius strip. Equivalently, a twisted torus can be visualized as a torus cut and
gluedwith a twist. In (a) we see the Ly=3 synthetic twisted torus. In a cold atom implementation, the blue solid links indicate the free
hopping while the dashed ones are laser or radio-frequency induced. The dashed red links are unchangedwith respect to figure 5(a),
while the green dashed ones are used to glue the borders of theMöbius strip. In (b) we show the spectroscopical arrangement of the six

internal degrees of freedom in the two-manifold scheme, which requires ⩾F 3

2
as, for instance, in 173Yb.
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• the hopping term σ σ′Ji
v
, , is induced and tailored by laser and radiofrequency couplings which are local in the

real-space picture, i.e., are acting on a single site of the 1D chain.

A similar dictionary can be obtained for other platforms. For instance, in the spirit of [67], a synthetic
dimension can be achieved also in photonic crystals as in [88, 89], by changing the connectivity of the lattice.

It is worth to notice that, while the real spatial dimension is virtually ‘unlimited’ (or better scaled up to order
102 lattices sites), the synthetic dimension is limited always by the number of atomic internal states available,
which is up to 10 for standard atoms like 40Kor 87Sr [90], but can be up to 20 in 167Er [91], if just one hyperfine
manifold is taken into account. However, by consideringmore than one hyperfinemanifold simultaneously or
ultracoldmolecules, see e.g., [92], this number can be further increased. A limited synthetic dimension
translates into a limited transverse dimension of the artificial topology.

Let us start by discussing how to implement the building block of our construction, a (spinless) periodic
chain from a (spinful) open one. In cold atoms,model (2) applied to create PBC can be realized for instance by
loading atomswith at least two hyperfine (almost degenerate) ground states ( ⩾F 1

2
) in a spin-independent

quasi-1D optical lattice of L sites. The free tunneling provides the terms in Jh, while the terms in Jv can be created
using Rabi oscillations between the hyperfine states, induced by Raman lasers focused on sites 1 and L,
respectively. Thus, the synthetic approachwe are proposing is essentially local, since the different species are
physically at the same site. Notice the scalability of the procedure: we can build PBC1D systems of any size L2 , if
we can build an associated open systemwith L sites andM=2 internal states.

3.1. Cylinder and torus
Let us extend the above construction to the simulation of a cylinder by layeringmany circles together as
explained in section 2.1. It is easy to realize that theHamiltonian of (3) can be implementedwith up to two-
photon transitions. Indeed, themost direct arrangement of the internal degrees of freedom σ is in terms of

hyperfine states within a unique hyperfinemanifold ⩾
−

F
L 1

2

y
, e.g., σ σ∣ 〉 = ∣ 〉 = ∣ = + 〉σb F m m0 , ¯F

( ) † . For

this ordering of the spins, the synthetic sewing coupling σσ′C applied at real-space sites i=1 and i= L requires
Δ =m 1F , while the synthetic transverse coupling σσ′B requires Δ =m 2F for any Ly. Thus, the only limitation in
Ly is given by the number of available internal states. It is worth to notice that the coupling σσ′C applies only
alternatively, i.e., it connects only odd and even spin values. This implies that the hyperfine states have to be
spectroscopically distinguishable, for instance, through a quadratic Zeeman splitting.

The spin arrangement considered above is not the only possible one. Furthermore, two ormore (meta)stable
hypermanifolds can be considered. Such a construction is particularly favorable in Earth-alkali like atoms like
Yb (see e.g., [93–96])where the optically connected 1S

0 and the P3
0 may be used. In this case, a convenient

arrangement is to place odd (even) σ′s in thefirst (second)manifold, i.e.
σ σ∣ 〉 = ∣ 〉 = ∣ = + 〉σb I F m m2 0 , , ¯F

(2 ) † , ( σ σ∣ + 〉 = ∣ 〉 = ∣ = + 〉σ+b II F m m2 1 0 , , ¯F
(2 1) † ). Thus, the

Hamiltonian (3) involves in this scheme just Δ =m 1F transitions. As further discussed below (see section 3.3),
the two-manifold construction allows for a richer interaction pattern than single-manifold one. Both schemes
are depicted infigure 3.

Let us now turn to the implementation of a torus geometry. As described in section 2.1, further couplings are
needed, which connect the top and the bottom circles. In the synthetic-lattice basis, this is equivalent to
connecting the last of the odd (even) spins with the first odd (even) one, for any real-space site. Such a
constructionmakes sensewhen Ly is at least 3, the case whose implementation is detailed infigure 4. For
simplicity, let us focus on the two-manifold construction.Here, the additional coupling requires just Δ =m 2F

and, similarly to the PBC engineered in [35], can be achieved for instance via a 3-photon transition. For generic
Ly, the needed transition has Δ = −m L 1f y .

3.2.Möbius and twisted torus
Let us nowdiscuss the cold atom implementation of aMöbius strip. As explained in section 2.2, we can get a
Möbius from the cylinder by replacing the synthetic coupling σσ′C , at (e.g.) real-space site i= 1with the coupling

σσ′C M . This is equivalent to connecting the internal states σ∣ = 〉l2 with ∣ 〉 + −L l2 ( 1 )y , and the states

σ∣ = − 〉l2 1 with ∣ − + 〉L l2( ) 1y , for =l L1 ,..., y . It is immediate to realize that for any arrangement of the
internal states as hyperfine states (both in the one- and two-manifold scenarios) this implies that themaximum
Δmf needed to engineer σσ′C M scales with Ly. For instance, in the two-manifold schemewith the arrangement for
the σ′s described above, themaximal ΔmF is exactly Ly, seefigure 5(c). Thus, the feasible transverse dimension
of the strip is technically limited, let us say to Ly=4, value which requires at least four-photon transitions.

The step to the implementation of a twisted torus is quite easy and requires the addition of a couplingwith
Δ = −m L 1F y , as described above.

7
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3.3. Interactions
The constructions we have presented produced the kinetic terms of theHamiltonians, which are indeed the
relevant part for the connectivity of themodel (including boundary conditions) and, thus, for the hoppings.
Cold atom implementation provides a natural way of including interactions. In the synthetic-lattice picture,
ordinary on-site interactions due to collisions of atomswith different spins appear as long-ranged.

The pattern of such long-range interactions can be partially controlled. For instance, it is potentially very
different for in the (i) one-manifold and in the (ii) two-manifold schemes. Interactions between hyperfine states
of the samemanifoldmay change a lot from atom to atom, but the non-spin-changing ones are in general all of
the same order ofmagnitude and, for Earth-alkali atoms, they are equal. The spin-changing ones are naturally
suppressed (p-wave) and can be enhancedwithout inducing too high three-body losses by using optical
Feshbach resonances [97–99]. An alternative route is given by Raman-induced interactions near s-wave
Feshbach resonance [100–102]. Collisions between atoms in differentmanifolds are not affected by such
constraint but are in general lossy.

Let us start discussing in details the case (i) with the assumption of SU +F(2 1)-symmetric interactions

= ∑ −H n nˆ ( ˆ 1)I
U

j j j2
, where = ∑σ

σ σ
= ′n b bˆj L j j1,2

( )† ( ) is the total occupation on site j of the physical 1D-chain.

As the interaction is invariant under reordering of the spins, the finalHubbardmodel on the synthetic cylinder
and theMöbius strip looks the same for any of the arrangements chosen to represent the σ in terms ofmF.
Indeed, supposing thatwe selectivelyfill only the spin-states needed i.e., 2Ly, the local occupation at site j of the
chain becomes the sumof local occupations at sites r= j and ′ = + −r L j2 1x of the synthetic lattice,

= ∑ += ′ ′n a a a aˆ ( )j l
L

r l r l r l r l1 ,
†

, ,
†

,
y . Thus, the interactions will be full range in the transverse direction atfixed r and

for pairs + −r L r( , 2 1 )y , = ∑ − += + −( )H N N N Nˆ ( ˆ 1) ˆ ˆ
I

U
r

L
r r r L r2 1

2
2 1

x
x

, where ≡ ∑ =N a aˆ
r l

L
r l r l1 ,
†

,
y .

The situation is quite different in scenario (ii), even under the assumption that the interactions are SU
+F(2 1)-invariant in each hyperfinemanifold. To be definite let us consider Earth-alkali like atoms and assume

that interactions are negligible in each hyperfinemanifoldwith respect to the inter-manifold ones, whichwe
model to be just density–density. ThefinalHI-term in the synthetic lattice is strongly dependent on the chosen
spin arrangement. For instance, we can engineer amodel where only the term ∑ + −N Nˆ ˆU

r r L r2 2 1x
appears.

4. Topology signatures

Let us discuss possible proof-of-principle experimental signatures of the topology of the underlyingmanifold
showing up in quantummany-body dynamics which are amenable to experimental observation in our synthetic
lattices. This section is not intended as a review of the broad subject of topological effects on quantum systems
and has no relation to topological quantumfield theory [103].

We start by discussing the simplest paradigmatic example of a line with two species which can be designed to
mimic a single speciesHamiltonian on a circumference, as described in section 2. In order to illustrate this idea
in a simpleway, let us consider the followingHamiltonian for a double spin chain of length L, with tunable
connecting terms at the boundaries:

∑ ∑

∑ ∑

σ σ λ σ

σ σ λ σ

σ σ σ σ

= +

+ +

+ +

=

−

+
=

=

−

+
=

H L

J J , (10)

i

L

i
x

i
x

i

i
z

i

L

i
x

i
x

i

L

i
z

x x
L L

x
L
x

1

1

,1 1,1

1

,1

1

1

,2 1,2

1

,2

1 1,1 1,2 ,1 ,2

where σi m
k
, denotes the kth component of the spin on site i, rungm. The two closing interactions J1 and JL are

responsible for turning the two open chains into a single one on a circumference. As a consequence, boundary
conditions are dictated by these coefficients. A signature of the artificial boundary conditions can bemeasured
by the correlation between spins on different chains at a boundary, namely:

σ σ σ σ≡ −B . (11)x
L
x x

L
x

1,1 ,2 1,1 ,2

ObservableB should be zero for disconnected chains. Its value forfixed =J 11 and ≡ ∈ −J J [ 1, 1]L is shown in
figure 7 for L=4 and λ = 1. Notice that J=1 corresponds to the PBC case, whichmaximally entangles both
chains and gives the highest correlator. For J=0,we obtain a single open BC chain.More interestingly, for

= −J 1, the twist in the boundary condition induces a perfect cancellation in the correlator. This effect is, indeed,
a scalable signature of the non-triviality of the topological effects.

Nonetheless, realistic simulations shouldmodel the underlying geometry by tuning the hoppings of
fermions or bosons.We shall now address such cases, looking for both single-particle and interacting signatures.
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4.1. Single-particle signatures
Anatural single-particle playgroundwherewe can observe the effect of the topology is to consider synthetic
magnetic fluxes, which boil down to hoppings with non-trivial phases. In our synthetic lattice it is very easy to
control such phases, in particular tomake them linearly dependentwith the position on the chain if the synthetic
links are induced throughRaman lasers.

Let us start with a 1DHamiltonianwith PBC, as in equation (1), either for spinless fermions or bosons, with
an arbitrary closing phase = ϕJ ec

i , representing amagneticflux. Its single-particle spectrum, as a function of
ϕ π∈ [0, 2 ] is shown infigure 8. Thus, the left and right extremes are PBC,while the center corresponds to anti-
periodic ones. Notice that the gap of a fermionic system at half-fillingwill evolve continuously, presenting a
maximumat ϕ π= . Of course, this gap scales as −L 1, but for afixed value of L the topological signature can be
clearly observed.

Themore involved case of a 2-rung ladder is shown infigure 9. The upper panels show the single-particle
spectrum for a freeHamiltonian either for spinless fermions or bosons, such as equation (3)with Ly=2. The
closing link between the two extremes can be chosen to be a generic unitarymatrix, as shown in equation (9). In
all cases we have selected a one-parameter family of unitarymatrices with special properties. Thus, in the left
panel offigure 9 it is a rotation of angleϕ:

Figure 7.Two four-spin Ising chains can be turned into a single chain of eight spins by tuning the boundary couplings, as shown in
equation (11). The plot shows the correlation of spins of each species at the different boundaries,B, as a function of the coupling

∈ −J [ 1, 1]L , for λ= =J 11 . Note the cancellation of correlations in the case of an artificially frustrated boundary.

Figure 8.Hofstadter-like single-particle spectrumof a 1D systemwith L=40 sites under a continuous change in the boundary
conditions, as in equation (1), with = ϕJ ec

i . TheX-axis is labeled by the phase ϕ π∈ [0, 2 ], and color corresponds to eigenvalue
index.
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ϕ
ϕ ϕ
ϕ ϕ

=
−

+U ( )
cos sin

sin cos
, (12)1

⎛
⎝⎜

⎞
⎠⎟

where the+1 stands for the value of the determinant. Thus, for ϕ = 0wehave =+U I(0)1 , the identitymatrix,
which implies cylindrical boundary conditions.Meanwhile, for the central panel we have used a different one-
parameter family:

ϕ
ϕ ϕ
ϕ ϕ

= −−U ( )
sin cos

cos sin
. (13)1

⎛
⎝⎜

⎞
⎠⎟

Although those transformations are also unitary, they all have determinant−1. For ϕ = 0we obtain
σ=−U (0) x1 , which denotes aMöbius strip. Notice that the single-particle spectrum is slightly different in both

cases, and thus the energy gap at half-filling, shown in the lower panel offigure 9, constitutes a clear topological
signature, even if it reduces as Lx increases. Remarkably, theMöbius ground state is exactly degenerate, since the
gap is exactly zero.

Evenmore, our synthetic construction allows to smoothly interpolate between the two by considering aU
matrix of the form:

ϕ
ϕ ϕ
ϕ ϕ

=
− ϕ

ϕ+ →−U ( )
cos sin e

sin cos e
(14)1 1

2i

2i

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

this hoppingmatrix is also unitary, but its determinant is ϕe2i . For ϕ = 0 it is +1, andwe have the cylinder, while
for ϕ π= 2 it becomes−1, andwe obtain theMöbius strip. The single-particle spectrumof this ×L 2x ladder is
shown in the third panel offigure 9.Notice that the gap vanishes for ϕ π= 2, since that point corresponds to a
Möbius band.

Figure 9.Hofstadter-like single-particle spectra of a two-rung ladder with Lx=40withHamiltonian (3)where the extremes are joined
by different unitary hoppingmatrices, all of themparametrized by a phase ϕ π π∈ −[ , ). Upper-left panel: cylindrical boundary
conditions, given by equation (12), for ϕ = 0 the system is topologically a cylinder, the determinant is always +1.Upper-central
panel:Möbius boundary conditions, given by equation (13), for ϕ = 0 the system is aMöbius band, the determinant is always−1.
Upper-right:mixed boundary conditions, given by equation (14), for ϕ = 0 the system is a cylinder while for ϕ π= 0 2 it is aMöbius
band. Although the three spectra bear strong similarities, they can be distinguished experimentally. The lower panel shows the gap of a
fermionic system at half filling for the three cases. Not that this is not an insulating bulk gap, as it is computed for afixed value of Lx.
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All these studies show that themagnetic single-particle behavior is sensitive to the orientability of the
underlying lattice. If the lattice is topologically equivalent to a cylinder and orientable, a constantmagnetic field
piercing the surface induces steady counter-propagating currents on each edge, which are called edge states.
Their topological nature reflects on their robustness under local perturbations. If the lattice is not orientable,
intuition dictates that the current cannot form as there is no notion of normal to the lattice, i.e., of sign of the
magnetic flux and thus of chirality of the currents.We can check our intuition by considering the synthetic
cylinder andMöbius strip as examples of orientable and no-orientable surface with sharp boundaries,
respectively.

4.2. Interacting signatures
Quantum simulators are not restricted to the study of free systems. Interactions can typically be tailored to a
certain extent. Our genericHamiltonian can bewritten as

∑ ∑μ= + −H H U n n n , (15)K

i j

i j

i
i i

,

whereHK is the kineticHamiltonian described in equation (2), andU is the strength of the nearest-neighbor
interaction, μi is a local chemical potential and ni is the local particle number. The sum in the second term is over
nearest neighbors of a certain adjacency structure, which need not be the same as the one employed for the
kinetic term.We take μi to be slightly random, in order to remove exact degeneracy in the ground state. The
topology of the underlying lattice are totally encoded in the kineticHamiltonianHK, which is affected by a global
hopping constant J.

Let us start by considering a bosonic systemwithHamiltonian (15) and focus on the local particle-number
fluctuations in the ground state, σ = ∑ 〈 〉 − 〈 〉n n N( )i i i

2 2 2 , whereN is the total particle number. It can be
employed to distinguish the different phases.Mean-field calculations cannot distinguish between different
topologies, since they are local in character so, a fortiori, it will give the same estimate for σ2 for all boundary
conditions. Using exact diagonalization, on the other hand, different topologies can be told apart by inspecting
the behavior of σ2 as a function of J U . For a large J U the bosons are in a superfluid state with large particle-
numberfluctuations, since each particle is delocalized over thewhole lattice. For small J U the bosons are
localized in a checkerboard pattern and the particle-number fluctuations are small.

We consider different boundary conditions for compact lattices (torus andKlein bottle, which is aMöbius
stripwith its boundariesglued together) and open lattices (cylinder andMöbius strip) for different sizes.

Infigure 10we plot σ2 for the ground state of the Bose–Hubbardmodel on a torus and on aKlein bottle. The
data shows that σ2 can tell the different boundary conditions apart in this case for intermediate values of J U . In
figure 11we plot σ2 as a function of J U for the normal strip and theMöbius strip for different strip lengths. As
expected, in the limits →J U 0 and large J U the ground state has the same boson numberfluctuations, which
is explained by the fact that in both limits the ground state is a product state in the site basis [104]. In the latter
limit this is not exactly the case due tofinite size effects. The data shows that for intermediate values of J U ,
where the ground state is entangled, σ2 is sensitive to the different boundary conditions. Despite the fact that the
dependece of physical quantities on the boundary conditionsmay be construed asfinite-size effect, in a large
systemwithN lattice sites the effects of the different boundary conditions can bemade to be as important as for

Figure 10.Ground state particle-numberfluctuations for the Bose–Hubbardmodel of equation (15) at halffilling, defined on a 2D
lattice with periodic boundary conditions in both directions—a torus—and on a 2D latticewith the boundary conditions of aKlein
bottle, computed via exact diagonalization. The results are for a 4 × 4 lattice. Similarly to the results for theMöbius band, the ground
state in twisted boundary conditions seems to favor larger particle-number fluctuations at intermediate values of J U . The
computation has been donewith small disorder in μ to remove the degeneracy at J=0, as the two complementary checkerboard
coverings of the lattice are ground states.
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small systems by rescaling the links between boundaries as →J J N , that is, J times the number of twisted links
modulo a factor of order one.

Let us now consider a fermionic systemwith two species per site and on-site repulsionmaking up a synthetic
lattice described by aHamiltonian of the form (15):

∑= + +
=

H H U n n h.c., (16)K

i

L

i i

1

(1) (2)
x

where ni
j( ) stands for the occupation operator on site i of the jth rung. The topology of the underlyingmanifold

plays a substantial role on the low energy physics ofHamiltonian (16). On a cylinder, the dynamics is
characterized by the independentmotion of particles on both rungs, while on theMöbius band the ladder
presents a crossing between them,where the species transmute. Thus, both rungs become a unique circuit, thus
changing dramatically the dynamics.

Some results are shown graphically infigure 12 and Lx=6 andU= J. From top to bottomwe see panels (a)
and (b), which depict the ground state and first excited state for the cylinder, and panels (c) and (d)which show
the correspondingMöbius states. The color of the circles represent the density, 〈 〉ni , while the colored arcs
represent the density–density correlator: 〈 〉 − 〈 〉〈 〉n n n ni j i j . The dashed lines represent the hopping correlator,

〈 〉a ai j
† , red being positive and blue negative in all cases.
The ground state of the cylinder, panel (a) offigure 12 is characterized by a homogeneous density and

density–density correlators. Thefirst excited state, shown infigure (b) is doubly degenerate, and it is obtained by
adding onemore particle at the upper species. Particles nevermove between species, as shown in the null vertical

Figure 11.Particle-number fluctuations in the ground state of the Bose–Hubbardmodel of equation (15) at half filling defined on a
stripwith periodic andMöbius boundary conditions computedwith exact diagonalization. The results are for strips 4, 6 and 8 sites
long. For large interactions compared to the hopping parameter the ground state presents larger particle-number fluctuations for
twisted boundary conditions than for regular ones. The computation has been donewith small disorder in μ to remove spurious
degeneracy.

Figure 12.Representation of the ground state andfirst excited state of the fermionicHubbardmodel (16) on a cylinder and aMöbius
strip of size Lx=6 and Ly=2,with repulsionU only taking place vertically and equal to the hopping rate J. The color code ismarked at
the rightside colorbar. The color of each node represents the expected value of 〈 〉ni . The color of the curved links represent the
density–density correlator, 〈 〉 − 〈 〉〈 〉n n n ni j i j . The dashed lines are the correlators 〈 〉a ai j

† , normalized to be in −[ 1, 1]to share the
same color code.
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hopping correlators. The physical picture can be described as follows. The particlesmove along their horizontal
lines in counter-phase, i.e., with highly negative density–density correlator between the two lines. This does not
lead to frustration because Lx is even and the lanes never cross.

Panels (c) and (d) show the situation for theMöbius topology. The ground state is degenerate, and both
states are depicted there. The local density now shows a checkered pattern, and also the density–density
correlators. The vertical hopping correlators show also an interesting pattern, alternating positive and negative
values. The physical picture is as follows. The lane crossing induced by the topology frustrates the homogeneous
ground state found in cylindrical topology. The two lanes have become one, and the only possibility to reduce
vertical repulsion is to freeze the system into a charge-density wave. Particles can notmove as fast as theywould
like to reduce their kinetic energy, which is an analogue of a traffic jam. That is the reason for the lane changing
correlators.

This results combines remarkably well with the information represented infigure 12, showing that theMott
transition takes place at different values of the J U parameter for different topologies, independently of the
system size. This effect is related in a non-trivial way to frustration and does not scale with the system size.

5. Conclusions

Wehave shown that non-trivial topologies can be simulated by a combination of two techniques, namely the use
of several species at every spatial degrees of freedomand the generation of couplings among these species only at
the boundaries of the system. In otherwords, species work as an extra dimension that allows for the generation
of topological transformations from localized interactions.

In particular we have presented explicit proposals for the realization of the following geometries:

• a circle,

• a cylinder,

• a torus,

• aMöbius strip,

• a twisted torus.

We have discussed different possibilities of experimental realization of the proposed schemes, extending
significantly the ideas of [67]. Finally, we have presented several signatures of the underlying lattice topology
both on free and interacting systems. These examples involve synthetic gaugefields and synthetic dimension,
including:

• a two-species open Ising chainwith localized interactions among them can be converted in a double-length
single-species chainwith a syntheticmagnetic field.

• Hofstadter-like spectra can be obtained for a circle, a cylinder and aMöbius strip.

• Hubbard systems ofmoderate size can be engineered on a torus, a Klein bottle, a cylinder and aMöbius strip.

It is worth noticing that by switching on the hopping terms connecting the sites at the bases of the cylinder
among themselves, we can also simulate a lattice with the topology of a two-sphere. In the cold atom
construction this amounts to closing off the top and bottomopenings of the cylinder, thus creating a compact
surfacewith no holes.

Our findings open paths to further investigations of both free andweakly interacting, as well as strongly
correlated systems in optical lattices with non-trivial topology. Combining such lattice geometries with synthetic
gaugefields leads to various spectacular effects that are within the reach of current experiments.
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