6 research outputs found

    Detection and identification of incipient transversal cracks in flexible and horizontal shafts of rotating machines

    No full text
    This Thesis proposes two Structural Health Monitoring (SHM) techniques concerning the detection and identification of incipient transverse cracks in rotating horizontal flexible shafts. Numerical and experimental applications are presented, dedicated to a specially designed test rig. The first SHM technique encompasses both numerical and experimental investigations. This technique is based on the nonlinear behavior of the cracked rotor. Diagnostic forces are used in conjunction with an evolutionary optimization method (Differential Evolution) in order to characterize the crack signatures in the spectral responses of the rotor (the so-called diagnostic peaks). The method of Multiple Scales determines the conditions required to induce the system to a combination resonance. This nonlinear SHM technique requires accurately mathematical models for the rotor and the crack. Therefore, a reliable Finite Element model to represent the dynamic behavior of the rotating machine is required. This model is obtained from various subsystems (shaft, couplings, discs, bearings and the gyroscopic effect). Once the defined subsystems are assembled, unknown parameters can be identified as based on experimental results. Concerning the crack model, three methods available in the literature to represent the breathing mechanism (typical characteristic of crack behavior found in horizontal flexible rotors) are analyzed, namely the Gasch, Mayes, and FLEX models. Additionally, the Linear Fracture Mechanics concepts used to determine the relationship between the shaft flexibility and the crack depth are described. The formulation used to adapt the models of Gasch and Mayes to the Finite Element method is also presented. Finally, the dynamic behavior of the cracked rotor under the three breathing models is analyzed for comparison purposes. The second SHM technique is a novel contribution, regarding rotordynamic applications. The detection of incipient transverse cracks is performed by the Electromechanical Impedance method, which is an eminent experimental approach (it does not require mathematical models). This type of application is accompanied by additional difficulties as characterizes by the dynamic excitation of the machine. Also, the socalled damage metrics are presented aiming at quantifying the severity of damage. The impedance- based technique is applied to the rotor system for three damage conditions, as follows: rotor at rest, rotor at a given rotating speed, and rotor under different unbalance excitation. Considering that the detection of incipient cracks through SHM techniques is a challenging problem these days in the context of rotating machinery, the obtained satisfactory results represent an important step to the state-of-the-art.Fundação de Amparo a Pesquisa do Estado de Minas GeraisDoutor em Engenharia MecânicaEsta Tese de Doutorado propõe duas técnicas de Monitoramento da Integridade Estrutural (SHM) voltadas para a detecção e identificação de trincas transversais incipientes em eixos de máquinas rotativas. São apresentadas aplicações numéricas e experimentais realizadas sobre uma bancada de testes especialmente projetada e construída para este trabalho. A primeira delas é baseada no comportamento não linear do sistema; utiliza forças de diagnóstico em conjunto com um método evolutivo de otimização (Evolução Diferencial) para caracterizar as assinaturas de trinca nas respostas espectrais do rotor (denominadas picos de diagnóstico). Neste caso, o trabalho compreende tanto a detecção como a identificação do dano e contempla simulações computacionais e testes experimentais, ainda que em carácter preliminar. O método das Múltiplas Escalas é usado para determinar as condições requeridas para induzir o equipamento a uma combinação de ressonância. Para sua implementação, a técnica requer modelos matemáticos representativos do rotor e da trinca. Assim sendo, um modelo de Elementos Finitos capaz de representar adequadamente o comportamento dinâmico de uma máquina rotativa é obtido levando em conta os vários subsistemas que a compõe (eixo, acoplamento, discos, mancais e ainda o efeito giroscópico). Uma vez os subsistemas definidos e agrupados, os parâmetros considerados desconhecidos são identificados com base em resultados experimentais. Quanto à trinca, são apresentados três dos principais métodos de modelagem disponíveis na literatura para o breathing, fenômeno característico produzido por trincas transversais em eixos rotativos horizontais. São discutidos os fundamentos dos modelos de Gasch, Mayes e FLEX. Adicionalmente, são incorporadas as bases da Mecânica da Fratura Linear que determinam a relação entre o aumento da flexibilidade do eixo com a profundidade da trinca. A formulação utilizada para adaptar os modelos de Gasch e de Mayes para o método dos Elementos Finitos também é apresentada. Por fim, o comportamento dinâmico do rotor é analisado comparativamente quando inseridos os três modelos de trinca. A segunda técnica de SHM proposta neste trabalho trata-se de uma contribuição inédita, onde a detecção das trincas transversais é feita através do método da Impedância Eletromecânica, este de características apenas experimentais (não necessita de modelos matemáticos). Esta técnica de SHM é aplicada em um sistema mecânicos solicitado dinamicamente, a saber, o rotor flexível. Sua aplicação pressupõe a utilização das chamadas métricas de dano que visam quantificar a severidade do dano para fins de comparação. O trabalho contempla ainda a aplicação desta técnica de SHM na bancada de testes sob três condições de falha, tanto para o rotor em repouso como em operação. Apesar da detecção de trincas incipientes através de técnicas de SHM ser um dos problemas desafiadores da atualidade (considerando aqueles encontrados na área de dinâmica de rotação), os resultados satisfatórios obtidos com o método da Impedância Eletromecânica acrescentam um passo significativo no estado da arte

    Monitoramento da Integridade Estrutural de Sistemas Mecânicos via Observador de Estado Modal

    No full text
    O monitoramento da integridade estrutural (SHM) de sistemas mecânicos trata-se de uma tecnologia emergente que combina modernos sensores com inteligentes algoritmos computacionais para analisar a condição da estrutura em tempo real ou quando for necessário. Segurança, alto desempenho em operação e redução nos custos de manutenção são alguns dos principais benefícios concedidos pela tecnologia SHM. Deste modo, esta tecnologia vem encontrando aceitação crescente na indústria, principalmente na aeronáutica e petrolífera onde os custos de manutenção são muito elevados. Dentre as técnicas de monitoramento desenvolvidas, a dos observadores de estado se destacou. No entanto, esta técnica SHM possui algumas restrições que motivam o interesse pelo desenvolvimento de uma nova abordagem para a mesma. Neste contexto, este trabalho alia os já conhecidos observadores de estado com as características do domínio modal a fim de determinar o modo de vibrar mais afetado pela presença de um dano qualquer no sistema monitorado. A partir do conhecimento desta informação é possível projetar, por exemplo, sistemas de controle e manutenção mais eficientes. Contudo, nesta dissertação são apresentadas aplicações numéricas e experimentais em diferentes sistemas mecânicos a fim de detalhar e demonstrar a técnica SHM via Observador de Estado Modal, inicialmente proposta aqui. Algumas destas aplicações contam ainda com sensores e atuadores piezelétricos acoplados as estruturas. Os resultados encontrados mostram pontos favoráveis e desfavoráveis da técnica propostaStructural Health Monitoring (SHM) is an emerging technology that combines modern sensors with intelligent algorithms to analyze the structural condition in real time or specific time. Security, high operation performance and maintenance reduction costs are some of the key benefits provided by this technology. Not surprisingly, the SHM techniques have recently received increased attention in aircraft and oil industries. Among the developed SHM techniques, state observers had special attention. However, this technique presents some restrictions that motivate the development of a new SHM approach through state observers. In this context, this work associates the already known state observers with features obtained in the modal domain to determine the vibration modes that are more affected by damage presence in the monitored structure. That information makes possible the design of efficient maintenance and control systems. In order to analyze the Modal State Observer technique, firstly presented here, numerical and experimental applications in different mechanical systems are presented. In some applications are used sensors and piezoelectric actuators coupled in the structures. The results lead to the conclusion that the Modal State Observer is a potential useful SHM toolCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Fault detection using state observers with unknown input, identified by orthogonal functions

    No full text
    Submitted by Jéssica Velho ([email protected]) on 2013-11-25T11:17:48Z No. of bitstreams: 1 Fault detection using state observers with unknown input, identified by orthogonal functions..pdf: 983641 bytes, checksum: e6af137b978ad0572a6d199a1eb398bd (MD5)Approved for entry into archive by Bruna Vieira ([email protected]) on 2013-11-25T19:32:37Z (GMT) No. of bitstreams: 1 Fault detection using state observers with unknown input, identified by orthogonal functions..pdf: 983641 bytes, checksum: e6af137b978ad0572a6d199a1eb398bd (MD5)Made available in DSpace on 2013-11-25T19:32:37Z (GMT). No. of bitstreams: 1 Fault detection using state observers with unknown input, identified by orthogonal functions..pdf: 983641 bytes, checksum: e6af137b978ad0572a6d199a1eb398bd (MD5) Previous issue date: 2012In this work a methodology of fault analysis in mechanical systems was developed using Kalman Filter state observes, in which, the input to the observers are identified by Fourier, Legendre and Chebyshev orthogonal functions. The proportional-integral observer is presented to the unknown input identification, this observer can be able to find the unknown inputs of the system and these inputs are used to the fault detection by way Kalman Filter Observer. Here can be seen the methodology of parameters and force identification using only the response of the system thought orthogonal functions. The methodology developed is applied in a composed structure of shake tables from Mechanical Vibrations Laboratory

    Fault detection using state observers with unknown input, identified by orthogonal functions

    No full text
    In this work a methodology of fault analysis in mechanical systems was developed using Kalman Filter state observes, in which, the input to the observers are identified by Fourier, Legendre and Chebyshev orthogonal functions. The proportional-integral observer is presented to the unknown input identification, this observer can be able to find the unknown inputs of the system and these inputs are used to the fault detection by way Kalman Filter Observer. Here can be seen the methodology of parameters and force identification using only the response of the system thought orthogonal functions. The methodology developed is applied in a composed structure of shake tables from Mechanical Vibrations Laboratory

    Fault detection using state observers with unknown input, identified by orthogonal functions

    Get PDF
    In this work a methodology of fault analysis in mechanical systems was developed using Kalman Filter state observes, in which, the input to the observers are identified by Fourier, Legendre and Chebyshev orthogonal functions. The proportional-integral observer is presented to the unknown input identification, this observer can be able to find the unknown inputs of the system and these inputs are used to the fault detection by way Kalman Filter Observer. Here can be seen the methodology of parameters and force identification using only the response of the system thought orthogonal functions. The methodology developed is applied in a composed structure of shake tables from Mechanical Vibrations Laboratory

    Shaking Table Attached to Magnetorheological Damper: Simulation and Experiments for Structural Engineering

    No full text
    This paper details how to construct a small-scale shaking table attached to a magnetorheological (MR) damper. The motivation for this construction relies on the increasing interest in modeling the dynamics of MR dampers—MR dampers have been used in structures for safety reasons. To model the MR damper, we use the so-called ‘Dahl model’, which is useful to represent systems with a hysteresis. The Dahl model, validated through experimental data collected in a laboratory, was combined with a linear model to represent a two-story building. This two-story building model allows us to simulate the dynamics of that building when its floors are attached to MR dampers. By doing so, we can assess—through simulation—to what extent MR dampers can protect structures from vibrations. Using data from the ‘El Centro’ earthquake (1940), we can conclude that MR dampers have the potential to reduce the impact of earthquakes upon structures. This finding emphasizes the potential benefits of MR dampers for the safety of structures, which is a conclusion taken from the apparatus detailed in this paper
    corecore