8 research outputs found

    Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: A prospective study

    Get PDF
    Introduction: Our goal was to assess the effects of titration of a norepinephrine infusion to increasing levels of mean arterial pressure (MAP) on sublingual microcirculation. Methods: Twenty septic shock patients were prospectively studied in two teaching intensive care units. The patients were mechanically ventilated and required norepinephrine to maintain a mean arterial pressure (MAP) of 65 mmHg. We measured systemic hemodynamics, oxygen transport and consumption (DO2 and VO2), lactate, albumin-corrected anion gap, and gastric intramucosal-arterial PCO2 difference (ΔPCO2). Sublingual microcirculation was evaluated by sidestream darkfield (SDF) imaging. After basal measurements at a MAP of 65 mmHg, norepinephrine was titrated to reach a MAP of 75 mmHg, and then to 85 mmHg. Data were analyzed using repeated measurements ANOVA and Dunnett test. Linear trends between the different variables and increasing levels of MAP were calculated. Results: Increasing doses of norepinephrine reached the target values of MAP. The cardiac index, pulmonary pressures, systemic vascular resistance, and left and right ventricular stroke work indexes increased as norepinephrine infusion was augmented. Heart rate, DO2 and VO2, lactate, albumin-corrected anion gap, and ΔPCO2 remained unchanged. There were no changes in sublingual capillary microvascular flow index (2.1 ± 0.7, 2.2 ± 0.7, 2.0 ± 0.8) and the percent of perfused capillaries (72 ± 26, 71 ± 27, 67 ± 32%) for MAP values of 65, 75, and 85 mmHg, respectively. There was, however, a trend to decreased capillary perfused density (18 ± 10,17 ± 10,14 ± 2 vessels/mm2, respectively, ANOVA P = 0.09, linear trend P = 0.045). In addition, the changes of perfused capillary density at increasing MAP were inversely correlated with the basal perfused capillary density (R2 = 0.95, P < 0.0001). Conclusions: Patients with septic shock showed severe sublingual microcirculatory alterations that failed to improve with the increases in MAP with norepinephrine. Nevertheless, there was a considerable interindividual variation. Our results suggest that the increase in MAP above 65 mmHg is not an adequate approach to improve microcirculatory perfusion and might be harmful in some patients.Facultad de Ciencias MĂ©dica

    Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: A prospective study

    Get PDF
    Introduction: Our goal was to assess the effects of titration of a norepinephrine infusion to increasing levels of mean arterial pressure (MAP) on sublingual microcirculation. Methods: Twenty septic shock patients were prospectively studied in two teaching intensive care units. The patients were mechanically ventilated and required norepinephrine to maintain a mean arterial pressure (MAP) of 65 mmHg. We measured systemic hemodynamics, oxygen transport and consumption (DO2 and VO2), lactate, albumin-corrected anion gap, and gastric intramucosal-arterial PCO2 difference (ΔPCO2). Sublingual microcirculation was evaluated by sidestream darkfield (SDF) imaging. After basal measurements at a MAP of 65 mmHg, norepinephrine was titrated to reach a MAP of 75 mmHg, and then to 85 mmHg. Data were analyzed using repeated measurements ANOVA and Dunnett test. Linear trends between the different variables and increasing levels of MAP were calculated. Results: Increasing doses of norepinephrine reached the target values of MAP. The cardiac index, pulmonary pressures, systemic vascular resistance, and left and right ventricular stroke work indexes increased as norepinephrine infusion was augmented. Heart rate, DO2 and VO2, lactate, albumin-corrected anion gap, and ΔPCO2 remained unchanged. There were no changes in sublingual capillary microvascular flow index (2.1 ± 0.7, 2.2 ± 0.7, 2.0 ± 0.8) and the percent of perfused capillaries (72 ± 26, 71 ± 27, 67 ± 32%) for MAP values of 65, 75, and 85 mmHg, respectively. There was, however, a trend to decreased capillary perfused density (18 ± 10,17 ± 10,14 ± 2 vessels/mm2, respectively, ANOVA P = 0.09, linear trend P = 0.045). In addition, the changes of perfused capillary density at increasing MAP were inversely correlated with the basal perfused capillary density (R2 = 0.95, P < 0.0001). Conclusions: Patients with septic shock showed severe sublingual microcirculatory alterations that failed to improve with the increases in MAP with norepinephrine. Nevertheless, there was a considerable interindividual variation. Our results suggest that the increase in MAP above 65 mmHg is not an adequate approach to improve microcirculatory perfusion and might be harmful in some patients.Facultad de Ciencias MĂ©dica

    Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study

    Get PDF
    Introduction Our goal was to assess the effects of titration of a norepinephrine infusion to increasing levels of mean arterial pressure (MAP) on sublingual microcirculation. Methods Twenty septic shock patients were prospectively studied in two teaching intensive care units. The patients were mechanically ventilated and required norepinephrine to maintain a mean arterial pressure (MAP) of 65 mmHg. We measured systemic hemodynamics, oxygen transport and consumption (DO2 and VO2), lactate, albumin-corrected anion gap, and gastric intramucosal-arterial PCO2 difference (Delta PCO2). Sublingual microcirculation was evaluated by sidestream darkfield (SDF) imaging. After basal measurements at a MAP of 65 mmHg, norepinephrine was titrated to reach a MAP of 75 mmHg, and then to 85 mmHg. Data were analyzed using repeated measurements ANOVA and Dunnett test. Linear trends between the different variables and increasing levels of MAP were calculated. Results Increasing doses of norepinephrine reached the target values of MAP. The cardiac index, pulmonary pressures, systemic vascular resistance, and left and right ventricular stroke work indexes increased as norepinephrine infusion was augmented. Heart rate, DO2 and VO2, lactate, albumin-corrected anion gap, and Delta PCO2 remained unchanged. There were no changes in sublingual capillary microvascular flow index (2.1 +/- 0.7, 2.2 +/- 0.7, 2.0 +/- 0.8) and the percent of perfused capillaries (72 +/- 26, 71 +/- 27, 67 +/- 32%) for MAP values of 65, 75, and 85 mmHg, respectively. There was, however, a trend to decreased capillary perfused density (18 +/- 10,17 +/- 10,14 +/- 2 vessels/mm(2), respectively, ANOVA P = 0.09, linear trend P = 0.045). In addition, the changes of perfused capillary density at increasing MAP were inversely correlated with the basal perfused capillary density (R-2 = 0.95, P < 0.0001). Conclusions Patients with septic shock showed severe sublingual microcirculatory alterations that failed to improve with the increases in MAP with norepinephrine. Nevertheless, there was a considerable interindividual variation. Our results suggest that the increase in MAP above 65 mmHg is not an adequate approach to improve microcirculatory perfusion and might be harmful in some patient

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p &lt; 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p &lt; 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p &lt; 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease

    36-month clinical outcomes of patients with venous thromboembolism: GARFIELD-VTE

    Get PDF
    Background: Venous thromboembolism (VTE), encompassing both deep vein thrombosis (DVT) and pulmonary embolism (PE), is a leading cause of morbidity and mortality worldwide.Methods: GARFIELD-VTE is a prospective, non-interventional observational study of real-world treatment practices. We aimed to capture the 36-month clinical outcomes of 10,679 patients with objectively confirmed VTE enrolled between May 2014 and January 2017 from 415 sites in 28 countries.Findings: A total of 6582 (61.6 %) patients had DVT alone, 4097 (38.4 %) had PE +/- DVT. At baseline, 98.1 % of patients received anticoagulation (AC) with or without other modalities of therapy. The proportion of patients on AC therapy decreased over time: 87.6 % at 3 months, 73.0 % at 6 months, 54.2 % at 12 months and 42.0 % at 36 months. At 12-months follow-up, the incidences (95 % confidence interval [CI]) of all-cause mortality, recurrent VTE and major bleeding were 6.5 (7.0-8.1), 5.4 (4.9-5.9) and 2.7 (2.4-3.0) per 100 person-years, respectively. At 36-months, these decreased to 4.4 (4.2-4.7), 3.5 (3.2-2.7) and 1.4 (1.3-1.6) per 100 person-years, respectively. Over 36-months, the rate of all-cause mortality and major bleeds were highest in patients treated with parenteral therapy (PAR) versus oral anti-coagulants (OAC) and no OAC, and the rate of recurrent VTE was highest in patients on no OAC versus those on PAR and OAC. The most frequent cause of death after 36-month follow-up was cancer (n = 565, 48.6 %), followed by cardiac (n = 94, 8.1 %), and VTE (n = 38, 3.2 %). Most recurrent VTE events were DVT alone (n = 564, 63.3 %), with the remainder PE, (n = 236, 27.3 %), or PE in combination with DVT (n = 63, 7.3 %).Interpretation: GARFIELD-VTE provides a global perspective of anticoagulation patterns and highlights the accumulation of events within the first 12 months after diagnosis. These findings may help identify treatment gaps for subsequent interventions to improve patient outcomes in this patient population
    corecore