2,151 research outputs found

    A high-resolution full-field range imaging system

    Get PDF
    There exist a number of applications where the range to all objects in a field of view needs to be obtained. Specific examples include obstacle avoidance for autonomous mobile robots, process automation in assembly factories, surface profiling for shape analysis, and surveying. Ranging systems can be typically characterized as being either laser scanning systems where a laser point is sequentially scanned over a scene or a full-field acquisition where the range to every point in the image is simultaneously obtained. The former offers advantages in terms of range resolution, while the latter tend to be faster and involve no moving parts. We present a system for determining the range to any object within a camera's field of view, at the speed of a full-field system and the range resolution of some point laser scans. Initial results obtained have a centimeter range resolution for a 10 second acquisition time. Modifications to the existing system are discussed that should provide faster results with submillimeter resolution

    Toward-1mm depth precision with a solid state full-field range imaging system

    Get PDF
    Previously, we demonstrated a novel heterodyne based solid-state full-field range-finding imaging system. This system is comprised of modulated LED illumination, a modulated image intensifier, and a digital video camera. A 10 MHz drive is provided with 1 Hz difference between the LEDs and image intensifier. A sequence of images of the resulting beating intensifier output are captured and processed to determine phase and hence distance to the object for each pixel. In a previous publication, we detailed results showing a one-sigma precision of 15 mm to 30 mm (depending on signal strength). Furthermore, we identified the limitations of the system and potential improvements that were expected to result in a range precision in the order of 1 mm. These primarily include increasing the operating frequency and improving optical coupling and sensitivity. In this paper, we report on the implementation of these improvements and the new system characteristics. We also comment on the factors that are important for high precision image ranging and present configuration strategies for best performance. Ranging with sub-millimeter precision is demonstrated by imaging a planar surface and calculating the deviations from a planar fit. The results are also illustrated graphically by imaging a garden gnome

    Characterization of modulated time-of-flight range image sensors

    Get PDF
    A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10–100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements

    Characterizing an image intensifier in an full-field range image system

    Get PDF
    We are developing a high precision full-field range imaging system. An integral component in this system is an image intensifier, which is modulated at frequencies up to 100 MHz. The range measurement precision is dictated by the image intensifier performance, in particular, the achievable modulation frequency, modulation depth, and waveform shape. By characterizing the image intensifier response, undesirable effects can be observed and quantified with regards to the consequence on the resulting range measurements, and the optimal operating conditions can be selected to minimize these disturbances. The characterization process utilizes a pulsed laser source to temporally probe the gain of the image intensifier. The laser is pulsed at a repetition rate slightly different to the image intensifier modulation frequency, producing a continuous phase shift between the two signals. A charge coupled device samples the image intensifier output, capturing the response over a complete modulation period. Deficiencies in our measured response are clearly identifiable and simple modifications to the configuration of our electrical driver circuit improve the modulation performance

    Full field image ranger hardware

    Get PDF
    We describe the hardware designed to implement a full field heterodyning imaging system. Comprising three key components - a light source, high speed shutter and a signal generator - the system is expected to be capable of simultaneous range measurements to millimetre precision over the entire field of view. Current modulated laser diodes provide the required illumination, with a bandwidth of 100 MHz and peak output power exceeding 600 mW. The high speed shutter action is performed by gating the cathode of an image intensifier, driven by a 50 Vpp waveform with 3.5 ns rise and fall times. A direct digital synthesiser, with multiple synchronised channels, provides high stability between its outputs, 160 MHz bandwidth and tuning of 0.1 Hz

    Image intensifier characterization

    Get PDF
    An image intensifier forms an integral part of a full-field image range finder under development at the University of Waikato. Operating as a high speed shutter with repetition rates up to 100 MHz, a method is described to characterise the response, both temporally and spatially, of the intensifier in order to correct for variations in the field of view and to optimise the operating conditions. A short pulse of visible light is emitted by a laser diode, uniformly illuminating the image intensifier, while a CCD camera captures the output from the intensifier. The phase of the laser pulse is continuously varied using a heterodyne configuration, automatically producing a set of samples covering the modulation cycle. The results show some anomalies in the response of our system and some simple solutions are proposed to correct for these

    Characterizing an image intensifier in an full-field range image system

    Get PDF
    We are developing a high precision full-field range imaging system. An integral component in this system is an image intensifier, which is modulated at frequencies up to 100 MHz. The range measurement precision is dictated by the image intensifier performance, in particular, the achievable modulation frequency, modulation depth, and waveform shape. By characterizing the image intensifier response, undesirable effects can be observed and quantified with regards to the consequence on the resulting range measurements, and the optimal operating conditions can be selected to minimize these disturbances. The characterization process utilizes a pulsed laser source to temporally probe the gain of the image intensifier. The laser is pulsed at a repetition rate slightly different to the image intensifier modulation frequency, producing a continuous phase shift between the two signals. A charge coupled device samples the image intensifier output, capturing the response over a complete modulation period. Deficiencies in our measured response are clearly identifiable and simple modifications to the configuration of our electrical driver circuit improve the modulation performance

    Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras

    Get PDF
    Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system’s response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power)

    A synchronised Direct Digital Synthesiser

    Get PDF
    We describe a Direct Digital Synthesiser (DDS) which provides three frequency-locked synchronised outputs to generate frequencies from DC to 160 MHz. Primarily designed for use in a heterodyning range imaging system, the flexibility of the design allows its use in a number of other applications which require any number of stable, synchronised high frequency outputs. Frequency tuning of 32 bit length provides 0.1 Hz resolution when operating at the maximum clock rate of 400 MSPS, while 14 bit phase tuning provides 0.4 mrad resolution. The DDS technique provides very high relative accuracy between outputs, while the onboard oscillator’s stability of ±1 ppm adds absolute accuracy to the design

    A high resolution full-field range imaging system for robotic devices

    Get PDF
    There has been considerable effort by many researchers to develop a high resolution full-field range imaging system. Traditionally these systems rely on a homodyne technique that modulates the illumination source and shutter speed at some high frequency. These systems tend to suffer from the need to be calibrated to account for changing ambient light conditions and generally cannot provide better than single centimeter range resolution, and even then over a range of only a few meters. We present a system, tested to proof-of-concept stage that is being developed for use on a range of mobile robots. The system has the potential for real-time, sub millimeter range resolution, with minimal power and space requirements
    corecore