99 research outputs found
Magnetic Phase transitions in Plasmas and Transport Barriers
A model of magnetic phase transitions in plasmas is presented: plasma blobs
with pressure excess or defect are dia- or para-magnets and move radially under
the influence of the background plasma magnetisation. It is found that magnetic
phase separation could be the underlying mechanism of L to H transitions and
drive transport barrier formation. Magnetic phase separation and associated
pedestal build up, as described here, can be explained by the well known
interchange mechanism, now reinterpreted as a magnetisation interchange which
remains relevant even when stable or saturated. A testable necessary criterion
for the L to H transition is presented.Comment: 3 figures, 9 pages, equations created with MathType To be published
in Nuclear Fusion, accepted August 201
Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT
We present a detection of the splashback feature around galaxy clusters selected using the Sunyaev–Zel’dovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, rsp, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that rsp inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these cluster samples with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases, potentially ameliorating causes of systematic error for optically selected clusters. We find that the measured rsp for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters with similar mass and redshift distributions, rsp is ∼2σ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogues and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy colour, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
Detection of CMB-cluster lensing using polarization data from SPTpol
We report the first detection of gravitational lensing due to galaxy clusters using only the polarization of the cosmic microwave background (CMB). The lensing signal is obtained using a new estimator that extracts the lensing dipole signature from stacked images formed by rotating the cluster-centered Stokes
Q
U
map cutouts along the direction of the locally measured background CMB polarization gradient. Using data from the SPTpol
500
deg
2
survey at the locations of roughly 18 000 clusters with richness
λ
≥
10
from the Dark Energy Survey (DES) Year-3 full galaxy cluster catalog, we detect lensing at
4.8
σ
. The mean stacked mass of the selected sample is found to be
(
1.43
±
0.40
)
×
10
14
M
⊙
which is in good agreement with optical weak lensing based estimates using DES data and CMB-lensing based estimates using SPTpol temperature data. This measurement is a key first step for cluster cosmology with future low-noise CMB surveys, like CMB-S4, for which CMB polarization will be the primary channel for cluster lensing measurements
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck . I. Construction of CMB lensing maps and modeling choices
Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel’dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on
S
8
=
σ
8
√
Ω
m
/
0.3
at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5% to 10% level
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck . II. Cross-correlation measurements and cosmological constraints
Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the
2500
deg
2
SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel’dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of
Ω
m
=
0.272
+
0.032
−
0.052
and
S
8
≡
σ
8
√
Ω
m
/
0.3
=
0.736
+
0.032
−
0.028
(
Ω
m
=
0.245
+
0.026
−
0.044
and
S
8
=
0.734
+
0.035
−
0.028
) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find
Ω
m
=
0.270
+
0.043
−
0.061
and
S
8
=
0.740
+
0.034
−
0.029
. Our constraints on
S
8
are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck
Recommended from our members
Short wavelength interferometer for ITER
There is a need for a real time, reliable density measurement compatible with the restricted access and radiation environment on ITER. Due to the large plasma path length, high density and field, refraction and Faraday rotation effects makes the use of contemporary long wavelength (>50{mu}m) interferometers impractical. In this paper we consider the design of a short wavelength vibration compensated interferometer which allows operation without a prohibitively large vibration isolated structure and permits the optics to be conveniently mounted directly in or on the tokamak. A density interferometer design for ITER incorporating a 10.6 {mu}m CO{sub 2} interferometer with vibration compensation provided by a 3. 39 {mu}m HeNe laser is discussed. The proposed interferometer design requires only a small intrusion into the ITER tokamak without a large support structure, refraction and Faraday rotation problems are avoided, and it provides a density resolution of at least 0.5%. Results are presented from an interferometer installed on the DIII-D tokamak incorporating essential elements of the proposed ITER design including 10.6 and 3.39 {mu}m lasers, a retro-reflector mounted on the vacuum wall of the DIII-D tokamak and real-time density feedback control. In this paper we consider a short wavelength interferometer design that incorporates vibration compensation for use on ITER. Our primary concern is to develop a interferometer design that will produce a reliable real time density monitor. We use the ITER conceptual design activity report as the basis of the design
Recent Progress on dispersion interferometers for nuclear fusion and low-temperature plasmas
Dispersion interferometers (DI) measure a phase shift caused by difference of the phase velocities in a medium (dispersion) between the fundamental and the second harmonic of laser light, a straightforward application of which is the measurement of electron density in a plasma. Common to all implementations, the DI probe beam is a mixture of above two wavelengths, both of which are interfered at the shorter wavelength after traversing the diagnosed medium and a frequency doubling crystal. Unlike conventional interferometers, DIs are insensitive to path length changes by mechanical vibrations. This advantage arises because the two wavelengths propagate along the same path and, in the final doubling process, fully cancel the vibration induced phase shift. While vibration compensation can also be achieved with two separate lasers in a so-called “two-color vibration compensated” system, additional advantages of the DI include the lack of a reference leg, a single laser source with common noise between the two colors and intrinsic co-linearity of the two colors. Hence the DI is able to obtain high density resolution with simple hardware and small alignment effort.After application to Gas-Dynamic Trap (GDT), the density resolution of DIs has been improved further on various toroidal devices (TEXTOR, LHD, HL-2A, W7-X) in the last decade. This is mainly due to introductions of various phase modulation techniques and phase extraction methods. Extension of the bandwidth for electron-density-fluctuation measurements up to the MHz-range was demonstrated on DIII-D. Design and bench tests of DI systems have been implemented for EAST as well as future large devices including JT-60SA and ITER.This talk will review recent progress of the DI by above diagnostic techniques, as well as applications to low-temperature plasmas, where the DI also offers an excellent opportunity for low-noise electron-density measurements.Laser Aided Plasma Diagnostics 201
Recent Progress on dispersion interferometers for nuclear fusion and low-temperature plasmas
A dispersion interferometer (DI) is known to be less sensitive to mechanical vibrations, which is one of the main sources of error for conventional interferometers. A simple optical configuration is also one of the advantages of the DI approach. Since the first application of a homodyne DI on a nuclear fusion plasma device in the 1990s, several interferometer techniques have improved the operation of the DI. Improvements in nonlinear crystals have also improved the performance and availability of the DI. Immunity to neutral gas density changes, which is needed for low-temperature plasma measurements, is also found. A remaining challenge is the suppression of the offset drifts, which can be significant. Recent studies confirmed that they are caused by ambient humidity changes
- …