1,566 research outputs found
Solid helium at high pressure: A path-integral Monte Carlo simulation
Solid helium (3He and 4He) in the hcp and fcc phases has been studied by
path-integral Monte Carlo. Simulations were carried out in the
isothermal-isobaric (NPT) ensemble at pressures up to 52 GPa. This allows one
to study the temperature and pressure dependences of isotopic effects on the
crystal volume and vibrational energy in a wide parameter range. The obtained
equation of state at room temperature agrees with available experimental data.
The kinetic energy, E_k, of solid helium is found to be larger than the
vibrational potential energy, E_p. The ratio E_k/E_p amounts to about 1.4 at
low pressures, and decreases as the applied pressure is raised, converging to
1, as in a harmonic solid. Results of these simulations have been compared with
those yielded by previous path integral simulations in the NVT ensemble. The
validity range of earlier approximations is discussed.Comment: 7 pages, 5 figure
Association of metabolic syndrome and change in Unified Parkinson\u27s Disease Rating Scale scores.
OBJECTIVE: To explore the association between metabolic syndrome and the Unified Parkinson\u27s Disease Rating Scale (UPDRS) scores and, secondarily, the Symbol Digit Modalities Test (SDMT).
METHODS: This is a secondary analysis of data from 1,022 of 1,741 participants of the National Institute of Neurological Disorders and Stroke Exploratory Clinical Trials in Parkinson Disease Long-Term Study 1, a randomized, placebo-controlled trial of creatine. Participants were categorized as having or not having metabolic syndrome on the basis of modified criteria from the National Cholesterol Education Program Adult Treatment Panel III. Those who had the same metabolic syndrome status at consecutive annual visits were included. The change in UPDRS and SDMT scores from randomization to 3 years was compared in participants with and without metabolic syndrome.
RESULTS: Participants with metabolic syndrome (n = 396) compared to those without (n = 626) were older (mean [SD] 63.9 [8.1] vs 59.9 [9.4] years; p \u3c 0.0001), were more likely to be male (75.3% vs 57.0%; p \u3c 0.0001), and had a higher mean uric acid level (men 5.7 [1.3] vs 5.3 [1.1] mg/dL, women 4.9 [1.3] vs 3.9 [0.9] mg/dL, p \u3c 0.0001). Participants with metabolic syndrome experienced an additional 0.6- (0.2) unit annual increase in total UPDRS (p = 0.02) and 0.5- (0.2) unit increase in motor UPDRS (p = 0.01) scores compared with participants without metabolic syndrome. There was no difference in the change in SDMT scores.
CONCLUSIONS: Persons with Parkinson disease meeting modified criteria for metabolic syndrome experienced a greater increase in total UPDRS scores over time, mainly as a result of increases in motor scores, compared to those who did not. Further studies are needed to confirm this finding.
CLINICALTRIALSGOV IDENTIFIER: NCT00449865
Security governance and the private military industry in Europe and North America
Even before Iraq the growing use of private military contractors has been widely discussed in the
academic and public literature. However, the reasons for this proliferation of private military
companies and its implications are frequently generalized due to a lack of suitable theoretical
approaches for the analysis of private means of violence in contemporary security. As a consequence,
this article contends, the analysis of the growth of the private military industry typically conflates two
separate developments: the failure of some developing states to provide for their national security and
the privatisation of military services in industrialized nations in Europe and North America. This
article focuses on the latter and argues that the concept of security governance can be used as a
theoretical framework for understanding the distinct development, problems and solutions for the
governance of the private military industry in developed countries.The United States Institute of Peace and the German Academic Exchange Service
Caffeine and Progression of Parkinson Disease: A Deleterious Interaction With Creatine.
OBJECTIVE: Increased caffeine intake is associated with a lower risk of Parkinson disease (PD) and is neuroprotective in mouse models of PD. However, in a previous study, an exploratory analysis suggested that, in patients taking creatine, caffeine intake was associated with a faster rate of progression. In the current study, we investigated the association of caffeine with the rate of progression of PD and the interaction of this association with creatine intake.
METHODS: Data were analyzed from a large phase 3 placebo-controlled clinical study of creatine as a potentially disease-modifying agent in PD. Subjects were recruited for this study from 45 movement disorders centers across the United States and Canada. A total of 1741 subjects with PD participated in the primary clinical study, and caffeine intake data were available for 1549 of these subjects. The association of caffeine intake with rate of progression of PD as measured by the change in the total Unified Parkinson Disease Rating Scale score and the interaction of this association with creatine intake were assessed.
RESULTS: Caffeine intake was not associated with the rate of progression of PD in the main analysis, but higher caffeine intake was associated with significantly faster progression among subjects taking creatine.
CONCLUSIONS: This is the largest and longest study conducted to date that addresses the association of caffeine with the rate of progression of PD. These data indicate a potentially deleterious interaction between caffeine and creatine with respect to the rate of progression of PD
Rare Copy Number Variants in \u3cem\u3eNRXN1\u3c/em\u3e and \u3cem\u3eCNTN6\u3c/em\u3e Increase Risk for Tourette Syndrome
Tourette syndrome (TS) is a model neuropsychiatric disorder thought to arise from abnormal development and/or maintenance of cortico-striato-thalamo-cortical circuits. TS is highly heritable, but its underlying genetic causes are still elusive, and no genome-wide significant loci have been discovered to date. We analyzed a European ancestry sample of 2,434 TS cases and 4,093 ancestry-matched controls for rare (\u3c 1% frequency) copy-number variants (CNVs) using SNP microarray data. We observed an enrichment of global CNV burden that was prominent for large (\u3e 1 Mb), singleton events (OR = 2.28, 95% CI [1.39–3.79], p = 1.2 × 10−3) and known, pathogenic CNVs (OR = 3.03 [1.85–5.07], p = 1.5 × 10−5). We also identified two individual, genome-wide significant loci, each conferring a substantial increase in TS risk (NRXN1 deletions, OR = 20.3, 95% CI [2.6–156.2]; CNTN6 duplications, OR = 10.1, 95% CI [2.3–45.4]). Approximately 1% of TS cases carry one of these CNVs, indicating that rare structural variation contributes significantly to the genetic architecture of TS
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
- …
