18 research outputs found

    Determination of the mechanical properties of epsilon martensite by nanoindentation in shape memory stainless alloys

    Get PDF
    ABSTRACT This work presents a hardness study and elastic modulus for the ε-martensite and γ-austenite phases of an iron based shape memory alloy. Using instrumented indentation, it was possible to determine the hardness and elasticity modulus of these phases separately. The martensitic phase presented a hardness of 7.0 GPa and the austenitic phase presented a hardness of 3.0 GPa. The elastic modulus values were 202 and 137 GPa for the martensitic and austenitic phases, respectively.RESUMO Esse trabalho apresenta um estudo da dureza e do mee austenita-γ da liga inoxidável à base de ferro com efeito de memória de forma. Utilizando indentação instrumentada, foi possível determinar a dureza e o módulo de elasticidade das fases austenita-γ e martensita-ε separadamente. A fase martensítica apresentou uma dureza de 7,0 GPa, enquanto que a dureza da fase austenítica foi de 3,0 GPa. Os valores de módulo de elasticidade foram 202 e 137 GPa, para as fases martensita e austenita, respectivamente.3944Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Ti-25Nb-25Ta alloy treated by plasma electrolytic oxidation in phosphoric acid for implant applications

    Get PDF
    Among titanium alloys with non-toxic elements, the Ti-25Nb-25Ta alloy has good elastic behavior for applications in osseous implants, biocompatibility, and excellent corrosion resistance. The present study aimed to better the biocompatibility characteristics of Ti-25Nb-25Ta alloy modifying its surface through Plasma Electrolytic Oxidation (PEO) treatment. The formed oxide coating is amorphous and composed of two distinct porous formations: smaller hole-shaped pores and larger volcano-like pores. The regions with the formation of smaller pores and in the hole shaped presented the highest atomic percentage of the chemical element phosphorus. Nanoindentation tests have shown that the hardness of the Ti-25Nb-25Ta alloy is slightly lower than the commercially pure grade 2 titanium (a material used as reference), while elastic modulus measurements of Ti-25Nb-25Ta presented more suitable values for implant application (lower values when compared with titanium reference). After PEO treatment there were significant mechanical surface improvements (increased fairly surface hardness and decreased elastic modulus) for application in osseous tissue. Despite the Ti-25Nb-25Ta alloy presented excellent characteristics for applications in hard biological tissues, the PEO treatment better its features.Keywords: Titanium alloy, Ti-25Nb-25Ta, nanoindentation, mechanical properties, Plasma Electrolytic Oxidation.

    Depth-Sensing Indentation on REBa2Cu3O(7-\delta) Single Crystals obtained from Xenotime Mineral

    Full text link
    A natural mixture of heavy rare earths oxides extracted from xenotime mineral have been used to prepare large single crystals of high-temperature REBa2Cu3O(7-\delta) superconductor grown using the CuO-BaO self-flux method. Its mechanical properties along the ab-plane were characterized using instrumented indentation. Hardness and elastic modulus were obtained by the Oliver and Pharr method and corresponds to 7.4 \pm 0.2 GPa and in range 135-175 GPa at small depths, respectively. Increasing the load promotes the nucleation of lateral cracks that causes a decrease in hardness and the measured elastic modulus by instrumented indentation at higher loads. The indentation fracture toughness was estimated by measuring the radial crack length from cube-corner indentations at various loads and was 0.8 \pm 0.2 MPa.m1/2. The observed slip systems of REBa2Cu3O(7-\delta) single crystals were [100](001) and [010](001), the same as for YBa2Cu3O(7-\delta) single crystals. The initial stages of deformation and fracture in the indentation process were investigated. The hardness and elastic modulus were not strongly modified by the crystallographic orientation in the ab-plane. This was interpreted in terms of the resolved shear stresses in the active slip systems. Evidence of cracking along the {100} and {110} planes on the ab-plane was observed. As a conclusion, the mechanical properties of REBa2Cu3O(7-\delta) single crystals prepared from xenotime are equivalent to those of YBa2Cu3O(7-\delta) single crystals produced by conventional rare earths oxides.Comment: The paper will appear in Volume 42 (2012) of the Brazilian Journal of Physic

    Mechanical properties of optical glass fibers damaged by nanoindentation and water ageing

    No full text
    Abstract Mechanical properties of optical glass fibers are strongly influenced by cracks on glass surface. Cracks may be generated during manufacture and handling. The chemo-mechanical effect due to water may decrease the response of glass fibers because of surface degradation. In this work glass fibers were aged in a wet chamber at humidity of 85% in temperatures lower than 90°C, during seven weeks. After being aged, the fibers were submitted to tension tests. The fracture loads were investigated by Weibull statistics. An increase in dynamic fatigue parameter was observed. Surface analysis by AFM indicated smooth surfaces. Small cracks on optical fiber glass surface were made by Vickers indentation and nanoindentation using a Berkovich indenter. A decrease on applied load to fracture indicates that the fiber was damaged by indentation. The influence of indentation load was investigated. As the deformation rate was very low during tension tests, the cracks grow during the test and the fiber fracture at loads lower than for not indented fibers. The effect of water and small indentation fracture on glass is discussed considering the surface damage induced by both methods. The size of the cracks from the different indentations and ageing are estimated

    Nanomechanical properties of rough surfaces

    No full text
    The nanoindentation technique allows the determination of mechanical properties at nanometric scale. Hardness (H) and elastic modulus (E) profiles are usually determined by using the Oliver-Pharr method from the load/unload curves. This approach is valid only for flat surfaces, or at least, when a very low degree of asperity is present (lower than 30 nm). The basic statement is the determination of the zero tip-surface contact point. If a rough surface is present, errors can occur in determining this contact point and, as a consequence, the surface hardness and elastic modulus profiles are drastically altered resulting in under evaluated values. Surfaces with different roughness were produced by controlled nitrogen glow discharge process on titanium. The changed nitriding parameters were different N2/H2 atmospheres and temperatures (600 °C-900 °C). The most correct H and E profiles were obtained by using the contact stiffness analysis method, proposed here, that overcomes the surface roughness. The obtained results were compared with available literature data

    Propriedades mecânicas, tribológicas e térmicas de nanocompósitos de PLLA com nanotubos de carbono de paredes múltiplas

    No full text
    Neste trabalho são estudados os efeitos da adição de nanotubos de carbono de parede múltipla (NCPM) em uma matriz de Poli(L-ácido láctico) (PLLA). Foras avaliadas duas rotas distintas de dispersão dos NCPM, uma utilizando agitação mecânica em solvente e a outra utilizando sonificação de alta energia em solvente. As propriedades mecânicas destes nanocompósitos foram avaliadas utilizando nanoindentação e microdureza vickers. Através da calorimetria exploratória diferencial foram determinadas as propriedades térmicas dos nanocompósitos (Tg, Tc, Tm e cristalinidade) obtidas. Por último, as propriedades tribológicas foram determinadas através de ensaios de deslizamento do tipo pino sobre disco, onde foram utilizadas diferentes cargas normais. As propriedades mecânicas e térmicas não foram significativamente afetadas pela adição do nanotubos, o que não se repetiu nas propriedades tribológicas, onde tanto o método de dispersão quanto a concentração de NCPM afetaram as propriedades. A micrografia das trilhas de desgaste sugere ainda que o mecanismo atuante foi modificado com a incorporação dos nanotubos, o mesmo pode ter acontecido nas amostras sonificadas
    corecore