158 research outputs found

    The 11.2 μ\mum emission of PAHs in astrophysical objects

    Get PDF
    The 11.2 μ\mum emission band belongs to the family of the `Unidentified' Infrared (UIR) emission bands seen in many astronomical environments. In this work we present a theoretical interpretation of the band characteristics and profile variation for a number of astrophysical sources in which the carriers are subject to a range of physical conditions. The results of Density Functional Theory (DFT) calculations for the solo out-of-plane (OOP) vibrational bending modes of large polycyclic aromatic hydrocarbon (PAH) molecules are used as input for a detailed emission model which includes the temperature and mass dependence of PAH band wavelength, and a PAH mass distribution that varies with object. Comparison of the model with astronomical spectra indicates that the 11.2 μ\mum band asymmetry and profile variation can be explained principally in terms of the mass distribution of neutral PAHs with a small contribution from anharmonic effects.Comment: 13 pages, 10 figures, 3 table. Accepted for publication in MNRA

    Polycyclic Aromatic Hydrocarbons with armchair edges and the 12.7 {\mu}m band

    Full text link
    In this Letter we report the results of density functional theory calculations on medium-sized neutral Polycyclic Aromatic Hydrocarbon (PAH) molecules with armchair edges. These PAH molecules possess strong C-H stretching and bending modes around 3 {\mu}m and in the fingerprint region (10-15 {\mu}m), and also strong ring deformation modes around 12.7 {\mu}m. Perusal of the entries in the NASA Ames PAHs Database shows that ring deformation modes of PAHs are common - although generally weak. We then propose that armchair PAHs with NC >65 are responsible for the 12.7 {\mu}m Aromatic Infrared Band in HII regions and discuss astrophysical implications in the context of the PAH life-cycle.Comment: Minor editin

    The 11.2 μm emission of PAHs in astrophysical objects

    Get PDF
    Article / Letter to editorSterrewach

    Mapping PAH sizes in NGC 7023 with SOFIA

    Get PDF
    NGC 7023 is a well-studied reflection nebula, which shows strong emission from polycyclic aromatic hydrocarbon (PAH) molecules in the form of aromatic infrared bands (AIBs). The spectral variations of the AIBs in this region are connected to the chemical evolution of the PAH molecules which, in turn, depends on the local physical conditions. We use the capabilities of SOFIA to observe a 3.2' x 3.4' region of NGC 7023 at wavelengths that we observe with high spatial resolution (2.7") at 3.3 and 11.2 um. We compare the SOFIA images with existing images of the PAH emission at 8.0 um (Spitzer), emission from evaporating very small grains (eVSG) extracted from Spitzer-IRS spectral cubes, the ERE (HST and CFHT), and H_2 (2.12 um). We create maps of the 11.2/3.3 um ratio to probe the morphology of the PAH size distribution and the 8.0/11.2 um ratio to probe the PAH ionization. We make use of an emission model and of vibrational spectra from the NASA Ames PAHdb to translate the 11.2/3.3 um ratio to PAH sizes. The 11.2/3.3 um map shows the smallest PAH concentrate on the PDR surface (H_2 and extended red emission) in the NW and South PDR. We estimated that PAHs in the NW PDR bear, on average, a number of carbon atoms (N_c) of ~70 in the PDR cavity and ~50 at the PDR surface. In the entire nebula, the results reveal a factor of 2 variation in the size of the PAH. We relate these size variations to several models for the evolution of the PAH families when they traverse from the molecular cloud to the PDR. The PAH size map enables us to follow the photochemical evolution of PAHs in NGC 7023. Small PAHs result from the photo-evaporation of VSGs as they reach the PDR surface. Inside the PDR cavity, the PAH abundance drops as the smallest PAH are broken down. The average PAH size increases in the cavity where only the largest species survive or are converted into C_60 by photochemical processing.Comment: accepted for publication in A&

    Photoinduced polycyclic aromatic hydrocarbon dehydrogenation: Molecular hydrogen formation in dense PDRs

    Get PDF
    The physical and chemical conditions in photodissociation regions (PDRs) are largely determined by the influence of far ultraviolet radiation. Far-UV photons can efficiently dissociate molecular hydrogen, a process that must be balanced at the HI/H2 interface of the PDR. Given that reactions involving hydrogen atoms in the gas phase are highly inefficient under interstellar conditions, H2 formation models mostly rely on catalytic reactions on the surface of dust grains. Additionally, molecular hydrogen formation in polycyclic aromatic hydrocarbons (PAHs) through the Eley-Rideal mechanism has been considered as well, although it has been found to have low efficiency in PDR fronts. In a previous work, we have described the possibility of efficient H2 release from medium to large sized PAHs upon photodissociation, with the exact branching between H-/H2-loss reactions being molecule dependent. Here we investigate the astrophysical relevance of this process, by using a model for the photofragmentation of PAHs under interstellar conditions. We focus on three PAHs cations (coronene, ovalene and circumcoronene), which represent three possibilities in the branching of atomic and molecular hydrogen losses. We find that, for ovalene (H2-loss dominated) the rate coefficient for H2 formation reaches values of the same order as H2 formation in dust grains. This result suggests that this hitherto disregarded mechanism can account, at least partly, for the high level of molecular hydrogen formation in dense PDRs.Comment: 6 pages, 4 figures, accepted for publication in A&
    corecore