135 research outputs found

    Developmental Regulation of B Lymphocyte Immune Tolerance Compartmentalizes Clonal Selection from Receptor Selection

    Get PDF
    AbstractB lymphocyte development is a highly ordered process that involves immunoglobulin gene rearrangements, antigen receptor expression, and a learning process that minimizes the development of cells with reactivity to self tissue. Two distinct mechanisms for immune tolerance have been defined that operate during early bone marrow stages of B cell development: apoptosis, which eliminates clones of cells, and receptor editing, which spares the cells but genetically reprograms their autoreactive antigen receptors through nested immunoglobulin L chain gene rearrangements. We show here that sensitivity to antigen-induced apoptosis arises relatively late in B cell development and is preceded by a functionally distinct developmental stage capable of receptor editing. This regulation compartmentalizes clonal selection from receptor selection

    FcγRIIB1 Inhibition of BCR-Mediated Phosphoinositide Hydrolysis and Ca2+ Mobilization Is Integrated by CD19 Dephosphorylation

    Get PDF
    AbstractThe B cell receptor for immunoglobulin G, FcγRIIB1, is a potent transducer of signals that block antigen-induced B cell activation. Coligation of FcγRIIB1 with B lymphocyte antigen receptors (BCR) causes premature termination of phosphoinositide hydrolysis and Ca2+ mobilization and inhibits proliferation. This inhibitory signal is mediated in part by phosphorylation of FcγRIIB1 and recruitment of phosphatases; however, the molecular target(s) of effectors is unknown. Here we report that FcγRIIB1 inhibition of BCR signaling is mediated in part by selective dephosphorylation of CD19, a BCR accessory molecule and coreceptor. CD19 dephosphorylation leads to failed CD19 association with phosphatidylinositol 3-kinase, and this in turn leads to termination of inositol-1,4,5-trisphosphate production, intracellular Ca2+ release, and Ca2+ influx. The results define a molecular circuit by which FcγRIIB signals block phosphoinositide hydrolysis

    B-cell anergy: from transgenic models to naturally occurring anergic B cells?

    Get PDF
    Anergy, a condition in which cells persist in the periphery but are unresponsive to antigen, is responsible for silencing many self-reactive B cells. Loss of anergy is known to contribute to the development of autoimmune diseases, including systemic lupus erythematosus and type 1 diabetes. Multiple transgenic mouse models have enabled the dissection of mechanisms that underlie anergy, and recently, anergic B cells have been identified in the periphery of wild-type mice. Heterogeneity of mechanistic concepts developed using model systems has complicated our understanding of anergy and its biological features. In this Review, we compare and contrast the salient features of anergic B cells with a view to developing unifying mechanistic hypotheses that explain their lifestyles

    γδ T cells affect IL-4 production and B-cell tolerance

    Get PDF
    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4–producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4–regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4–inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance

    Soluble Antigen Arrays for Selective Desensitization of Insulin-Reactive B Cells

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Molecular Pharmaceutics, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.molpharmaceut.8b01250.Autoimmune diseases are believed to be highly dependent on loss of immune tolerance to self-antigens. Currently, no treatments have been successful clinically in inducing autoantigen-specific tolerance, including efforts to utilize antigen-specific immunotherapy (ASIT) to selectively correct the aberrant autoimmunity. Soluble antigen arrays (SAgAs) represent a novel autoantigen delivery system composed of a linear polymer, hyaluronic acid (HA), displaying multiple copies of conjugated autoantigen. We have previously reported that Soluble Antigen Arrays proteolipid protein (SAgAPLP) induced tolerance to a specific multiple sclerosis (MS) autoantigen, proteolipid peptide (PLP). Utilizing SAgA technology, we have developed a new ASIT as a possible type 1 diabetes (T1D) therapeutic by conjugating human insulin to HA, known as Soluble Antigen Array Insulin (SAgAIns). Three types were synthesized: low valency lvSAgAIns (2 insulins per HA), medium valency mvSAgAIns (4 insulins per HA) and, high valency hvSAgAIns (9 insulins per HA) to determine if valency differentially modulates the ex vivo activity of insulin-binding B cells (IBCs). Extensive biophysical characterization was performed for the SAgA molecules. SAgAIns molecules were successfully used to affect the biologic activity of IBCs by inducing desensitization of the B cell antigen receptors (BCR). SAgAIns bound specifically to insulin-reactive B cells without blocking epitopes recognized by antibodies against the Fc regions of membrane immunoglobulin or CD79 transducer components of the BCR. Pre-incubation of IBCs (125Tg) with SAgAIns, but not HA alone, rendered the IBCs refractory to re-stimulation. SAgAIns induced a decrease in BCR expression and IP3R-mediated intracellular calcium release. Surprisingly, SAgAIns binding to BCR on the surface of IBCs induced the observed effects at both high and low SAgAIns valency. Future studies aim to test the effects of SAgAIns on disease progression in the VH125.NOD mouse model of T1D.NIH T32 GM00854
    corecore