26 research outputs found

    Empirical analyses of the factors affecting confirmation bias and the effects of confirmation bias on software developer/tester performance

    Get PDF
    Background: During all levels of software testing, the goal should be to fail the code. However, software developers and testers are more likely to choose positive tests rather than negative ones due to the phenomenon called confirmation bias. Confirmation bias is defined as the tendency of people to verify their hypotheses rather than refuting them. In the literature, there are theories about the possible effects of confirmation bias on software development and testing. Due to the tendency towards positive tests, most of the software defects remain undetected, which in turn leads to an increase in software defect density. Aims: In this study, we analyze factors affecting confirmation bias in order to discover methods to circumvent confirmation bias. The factors, we investigate are experience in software development/testing and reasoning skills that can be gained through education. In addition, we analyze the effect of confirmation bias on software developer and tester performance. Method: In order to measure and quantify confirmation bias levels of software developers/testers, we prepared pen-and-paper and interactive tests based on two tasks from cognitive psychology literature. These tests were conducted on the 36 employees of a large scale telecommunication company in Europe as well as 28 graduate computer engineering students of Bogazici University, resulting in a total of 64 subjects. We evaluated the outcomes of these tests using the metrics we proposed in addition to some basic methods which we inherited from the cognitive psychology literature. Results: Results showed that regardless of experience in software development/testing, abilities such as logical reasoning and strategic hypotheses testing are differentiating factors in low confirmation bias levels. Moreover, the results of the analysis to investigate the relationship between code defect density and confirmation bias levels of software developers and testers showed that there is a direct correlation between confirmation bias and defect proneness of the code. Conclusions: Our findings show that having strong logical reasoning and hypothesis testing skills are differentiating factors in the software developer/tester performance in terms of defect rates. We recommend that companies should focus on improving logical reasoning and hypothesis testing skills of their employees by designing training programs. As future work, we plan to replicate this study in other software development companies. Moreover, we will use confirmation bias metrics in addition to product and process metrics in for software defect prediction. We believe that confirmation bias metrics would improve the prediction performance of learning based defect prediction models which we have been building over a decade

    Influence of confirmation biases of developers on software quality: an empirical study

    Get PDF
    The thought processes of people have a significant impact on software quality, as software is designed, developed and tested by people. Cognitive biases, which are defined as patterned deviations of human thought from the laws of logic and mathematics, are a likely cause of software defects. However, there is little empirical evidence to date to substantiate this assertion. In this research, we focus on a specific cognitive bias, confirmation bias, which is defined as the tendency of people to seek evidence that verifies a hypothesis rather than seeking evidence to falsify a hypothesis. Due to this confirmation bias, developers tend to perform unit tests to make their program work rather than to break their code. Therefore, confirmation bias is believed to be one of the factors that lead to an increased software defect density. In this research, we present a metric scheme that explores the impact of developers’ confirmation bias on software defect density. In order to estimate the effectiveness of our metric scheme in the quantification of confirmation bias within the context of software development, we performed an empirical study that addressed the prediction of the defective parts of software. In our empirical study, we used confirmation bias metrics on five datasets obtained from two companies. Our results provide empirical evidence that human thought processes and cognitive aspects deserve further investigation to improve decision making in software development for effective process management and resource allocation

    Preliminary analysis of the effects of confirmation bias on software defect density

    Get PDF
    In cognitive psychology, confirmation bias is defined as the tendency of people to verify hypotheses rather than refuting them. During unit testing software developers should aim to fail their code. However, due to confirmation bias, most defects might be overlooked leading to an increase in software defect density. In this research, we empirically analyze the effect of confirmation bias of software developers on software defect density

    Safety-Critical Systems and Agile Development: A Mapping Study

    Full text link
    In the last decades, agile methods had a huge impact on how software is developed. In many cases, this has led to significant benefits, such as quality and speed of software deliveries to customers. However, safety-critical systems have widely been dismissed from benefiting from agile methods. Products that include safety critical aspects are therefore faced with a situation in which the development of safety-critical parts can significantly limit the potential speed-up through agile methods, for the full product, but also in the non-safety critical parts. For such products, the ability to develop safety-critical software in an agile way will generate a competitive advantage. In order to enable future research in this important area, we present in this paper a mapping of the current state of practice based on {a mixed method approach}. Starting from a workshop with experts from six large Swedish product development companies we develop a lens for our analysis. We then present a systematic mapping study on safety-critical systems and agile development through this lens in order to map potential benefits, challenges, and solution candidates for guiding future research.Comment: Accepted at Euromicro Conf. on Software Engineering and Advanced Applications 2018, Prague, Czech Republi

    An analysis of the effects of company culture, education and experience on confirmation bias levels of software developers and testers

    Get PDF
    In this paper, we present a preliminary analysis of factors such as company culture, education and experience, on confirmation bias levels of software developers and testers. Confirmation bias is defined as the tendency of people to verify their hypotheses rather than refuting them and thus it has an effect on all software testing

    Towards a Metric Suite Proposal to Quantify Confirmation Biases of Developers

    Get PDF
    The goal of software metrics is the identification and measurement of the essential parameters that affect software development. Metrics can be used to improve software quality and productivity. Existing metrics in the literature are mostly product or process related. However, thought processes of people have a significant impact on software quality as software is designed, implemented and tested by people. Therefore, in defining new metrics, we need to take into account human cognitive aspects. Our research aims to address this need through the proposal of a new metric scheme to quantify a specific human cognitive aspect, namely "confirmation bias". In our previous research, in order to quantify confirmation bias, we defined a methodology to measure confirmation biases of people. In this research, we propose a metric suite that would be used by practitioners during daily decision making. Our proposed metric set consists of six metrics with a theoretical basis in cognitive psychology and measurement theory. Empirical sample of these metrics are collected from two software companies that are specialized in two different domains in order to demonstrate their feasibility. We suggest ways in which practitioners may use these metrics to improve software development process

    Modeling Human Aspects to Enhance Software Quality Management

    Get PDF
    The aim of the research is to explore the impact of cognitive biases and social networks in testing and developing software. The research will aim to address two critical areas: i) to predict defective parts of the software, ii) to determine the right person to test the defective parts of the software. Every phase in software development requires analytical problem solving skills. Moreover, using everyday life heuristics instead of laws of logic and mathematics may affect quality of the software product in an undesirable manner. The proposed research aims to understand how mind works in solving problems. People also work in teams in software development that their social interactions in solving a problem may affect the quality of the product. The proposed research also aims to model the social network structure of testers and developers to understand their impact on software quality and defect prediction performance

    Personal Informatics for Non-Geeks: Lessons Learned from Ordinary People

    Get PDF
    We have been studying how ordinary people use personal informatics technologies for several years. In this paper we briefly describe our early studies, which influenced our design decisions in a recent pilot study that included junior doctors in a UK hospital. We discuss a number of failures in compliance and data collection as well as lessons learned

    Involving External Stakeholders in Project Courses

    Full text link
    Problem: The involvement of external stakeholders in capstone projects and project courses is desirable due to its potential positive effects on the students. Capstone projects particularly profit from the inclusion of an industrial partner to make the project relevant and help students acquire professional skills. In addition, an increasing push towards education that is aligned with industry and incorporates industrial partners can be observed. However, the involvement of external stakeholders in teaching moments can create friction and could, in the worst case, lead to frustration of all involved parties. Contribution: We developed a model that allows analysing the involvement of external stakeholders in university courses both in a retrospective fashion, to gain insights from past course instances, and in a constructive fashion, to plan the involvement of external stakeholders. Key Concepts: The conceptual model and the accompanying guideline guide the teachers in their analysis of stakeholder involvement. The model is comprised of several activities (define, execute, and evaluate the collaboration). The guideline provides questions that the teachers should answer for each of these activities. In the constructive use, the model allows teachers to define an action plan based on an analysis of potential stakeholders and the pedagogical objectives. In the retrospective use, the model allows teachers to identify issues that appeared during the project and their underlying causes. Drawing from ideas of the reflective practitioner, the model contains an emphasis on reflection and interpretation of the observations made by the teacher and other groups involved in the courses. Key Lessons: Applying the model retrospectively to a total of eight courses shows that it is possible to reveal hitherto implicit risks and assumptions and to gain a better insight into the interaction...Comment: Abstract shortened since arxiv.org limits length of abstracts. See paper/pdf for full abstract. Paper is forthcoming, accepted August 2017. Arxiv version 2 corrects misspelled author nam
    corecore