
Open Research Online
The Open University’s repository of research publications
and other research outputs

Empirical analyses of the factors affecting confirmation
bias and the effects of confirmation bias on software
developer/tester performance
Conference or Workshop Item

How to cite:

Calikli, Gul and Bener, Ayse (2010). Empirical analyses of the factors affecting confirmation bias and the
effects of confirmation bias on software developer/tester performance. In: 6th International Conference on Predictive
Models in Software Engineering, 12-13 Sep 2010, Timisoara, Romania.

For guidance on citations see FAQs.

c© [not recorded]

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/1868328.1868344

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82981903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1145/1868328.1868344
http://oro.open.ac.uk/policies.html

Empirical Analyses of the Factors Affecting Confirmation

Bias and the Effects of Confirmation Bias on Software

Developer/Tester Performance

ABSTRACT

Background: During all levels of software testing, the goal

should be to fail the code. However, software developers and

testers are more likely to choose positive tests rather than negative

ones due to the phenomenon called confirmation bias.

Confirmation bias is defined as the tendency of people to verify

their hypotheses rather than refuting them. In the literature, there

are theories about the possible effects of confirmation bias on

software development and testing. Due to the tendency towards

positive tests, most of the software defects remain undetected,

which in turn leads to an increase in software defect density.

Aims: In this study, we analyze factors affecting confirmation bias

in order to discover methods to circumvent confirmation bias. The

factors, we investigate are experience in software

development/testing and reasoning skills that can be gained

through education. In addition, we analyze the effect of

confirmation bias on software developer and tester performance.

Method: In order to measure and quantify confirmation bias

levels of software developers/testers, we prepared pen-and-paper

and interactive tests based on two tasks from cognitive

psychology literature. These tests were conducted on the 36

employees of a large scale telecommunication company in Europe

as well as 28 graduate computer engineering students of Bogazici

University, resulting in a total of 64 subjects.

We evaluated the outcomes of these tests using the metrics we

proposed in addition to some basic methods which we inherited

from the cognitive psychology literature.

Results: Results showed that regardless of experience in software

development/testing, abilities such as logical reasoning and

strategic hypotheses testing are differentiating factors in low

confirmation bias levels. Moreover, the results of the analysis to

investigate the relationship between code defect density and

confirmation bias levels of software developers and testers

showed that there is a direct correlation between confirmation bias

and defect proneness of the code.

Conclusions: Our findings show that having strong logical

reasoning and hypothesis testing skills are differentiating factors

in the software developer/tester performance in terms of defect

rates. We recommend that companies should focus on improving

logical reasoning and hypothesis testing skills of their employees

by designing training programs. As future work, we plan to

replicate this study in other software development companies.

Moreover, we will use confirmation bias metrics in addition to

product and process metrics in for software defect prediction. We

believe that confirmation bias metrics would improve the

prediction performance of learning based defect prediction models

which we have been building over a decade.

Categories and Subject Descriptors

H.1.2 [User/Machine Systems]: Human Factors, Software

Psychology

General Terms

Measurement, Experimentation, Human Factors

Keywords

Cognitive biases, confirmation bias, software engineering,

software testing

1. INTRODUCTION
One of the basic components of software development and testing

are the human aspects.

Among these human aspects are cognitive biases, which are

defined as the deviation of human mind from the laws of logic and

accuracy [1]. The notion of cognitive biases was first introduced

by Tversky and Kahneman [2,3]. There are various cognitive bias

types such as availability, representativeness, anchoring and

adjustment.

Gul Calikli

Software Research Laboratory

Department of Computer Engineering,
Bogazici University, Turkey
0090 212 3595400-7227

gul.calikli@boun.edu.tr

Ayse Bener

Ted Rogers School of Information
Technology Management,

Ryerson University, Canada

0001 416 9795297

ayse.bener@ryerson.ca

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
PROMISE2010, Sep 12-13, 2010. Timisoara, Romania
Copyright 2010 ACM ISBN 978-1-4503-0404-7...$10.00.

1

As far as we know, Stacy and MacMillian are the two pioneers

who recognized the possible effects of cognitive biases on

software engineering [1]. Another study is by Parsons and

Saunders [4], who empirically showed the existence of adjustment

and anchoring on software artifact reuse.

Confirmation bias, which is one of these cognitive biases, is also

likely to affect software development process, as it was previously

indicated by Stacy and MacMillan [1]. The tendency of people to

seek for evidence that could verify their theories rather than

seeking for evidence that could falsify them is called confirmation

bias. The term confirmation bias was first used by Peter Wason in

his rule discovery experiment, where the subject must try to refute

his/her hypotheses to arrive at a correct solution [5].

Wason also explained the results of his selection task experiment

using facts based on confirmation bias [7]. In this task, Wason

gave subjects partial information about a set of objects, and asked

them to specify what further information they would need to tell

whether or not a conditional rule ("If A, then B") applies. It has

been found repeatedly that people perform badly on various forms

of this test, in most cases ignoring information that could

potentially refute the rule.

Empirical evidence shows that software testers are more likely to

choose positive tests rather than negative tests [8]. However,

during all levels of software testing the attempt should be to fail

the code to reduce software defect density. In order to discover

more defects, confirmation bias levels of testers and developers

need to be low.

In this study, we propose a method to measure/quantify

confirmation bias levels, so that empirical studies about the effect

of confirmation bias on software development/testing can be

carried out. Our methodology consists of interactive and written

tests based on Wason’s rule discovery and selection tasks,

respectively. We analyze the outcomes of our tests based on the

existing work in cognitive psychology literature as well as the

metrics we have defined during this study.

The rest of the paper is organized as follows: Detailed information

about confirmation bias and related work in cognitive psychology

literature are given in Section II. We explain our methodology for

measurement/quantification of confirmation bias in Section III.

Metrics we defined for this study are explained in Section IV. We

mention the dataset used in our empirical analysis in Section V. In

Section VI results together with their corresponding

interpretations are presented. Finally, the impact of the results and

potential future directions are discussed in Section VII.

2. CONFIRMATION BIAS
This section explains the two experiments proposed by P. C.

Wason [5,7] to show the presence of confirmation bias.

2.1 Wason’s Rule Discovery Experiment

In this experiment, Wason asked his subjects to discover a simple

rule about triples of numbers [5]. Initially, subjects are given a

record sheet on which the triple "2, 4, 6" is written.

The experimental procedure can be explained as follows: The

subjects are told that "2 4 6" conforms to this rule. In order to

discover the rule, they are asked to write down triples together

with the reasons of their choice on the record sheet. After each

instance, the tester tells whether the instance conforms to the rule

or not. The subject can announce the rule only when he/she is

highly confident. If the subject cannot discover the rule, he/she

can continue giving instances together with reasons for his/her

choice. This procedure continues iteratively until either the

subject discovers the rule or he/she wishes to give up. If the

subject cannot discover the rule in 45 minutes, the experimenter

aborts the test.

Wason designed this experiment in a way such that subjects

mostly showed a tendency to focus on a set of triples that is

contained inside the set of all triples conforming to the correct

rule. Due to this fact, discovery of the true rule was possible only

by refuting hypotheses that come to mind.

2.1.1 Eliminative/Enumerative Index
Wason's eliminative/enumerative index aims to give an idea about

the kind of thinking of subjects by considering the nature of the

instances given by the subjects in relation to their reasons for

choice. This index is calculated as a ratio between the number of

subsequent instances incompatible with each reason proposed to

the number of compatible instances, summed over all proposed

reasons. It is desirable to have eliminative/enumerative index to

be greater than 1. Wason indicates that when this value is greater

than 1 (the higher the better), the less confirmation bias of the

subject is.

2.1.2 Test Severity
In [6], Poletiek mentions severity of the tests, which corresponds

to the instances given by subjects, to discover the rule in Wason’s

selection task. A test is more severe when the chance of the

supporting observation occurring under the assumption of the

hypothesis H exceeds the chance of its occurring without the

assumption of the H (i.e. with the assumption of the background

knowledge b only). The higher this ratio is (exceeds 1), the higher

the severity of the test is. In other words, when the severity of a

test is high, more alternative hypotheses are eliminated.

2.2 Wason’s Selection Task

In the original Wason's Selection Task, the subject is given four

cards, where each card has a letter on one side and a number on

the other side. These four cards are placed on a table showing

respectively D, K, 3, 7. Given the hypothesis “Every card that has

a D on one side has a 3 on the other side”, the subject is asked

which card(s) must be turned over to find out whether the

hypothesis is true or false. The hypothesis can be translated into

the logical implication of the form "If P, then Q”, whereas each

tests is the selection of one of the cards (P, not-P, Q, not-Q).

Wason interprets selection of the cards D and 3 (i.e. P and Q) as a

choice of a verifier, whereas the subject is defined to be a falsifier

if he/she selects the cards D and 7 (i.e. P and not-Q). However,

subject can choose cards D and 3 due to matching bias as well as

confirmation bias [6, 9, 10].

2.2.1 Matching Bias
Matching bias may lead subjects to select cards on the basis of a

simple judgment of relevance. In other words, the selection of the

correct cards in the original Wason’s selection task can also result

due to matching of the letter D and number 3 in the stated

2

http://en.wikipedia.org/wiki/Material_conditional

hypothesis. The separation of matching from logic requires use of

rules of the form if P, then Q and three negated forms of the same

rule, which are of the form If P, then not Q, if not P, then Q and if

not P, then not Q respectively.

In [4], Evans and Lynch used the negated version of the selection

task (i.e. if P, then not-Q) as well as the original task (i.e. if P,

then Q). In this experimental study, the subjects chose P and Q

cards, instead of P and not-Q cards. Evans and Lynch interpreted

subjects’ behavior as either being falsifying or matching.

However, if a subject, who has chosen P and Q cards in the

standard version, also selects P and Q cards in the negated

version, such behavior can be explained only by matching bias.

Otherwise, subject's verifying behavior accompanied by falsifying

behavior would not make sense. In this study, all four negated

forms are used to predict matching bias.

3. PROPOSED APPROACH TO MEASURE/

QUANTIFY CONFIRMATION BIAS
In order to conduct an empirical analysis, we need a methodology

to measure/quantify confirmation bias level of individuals. For

this purpose, we prepared two types of tests that are interactive

test and written test.

3.1 Interactive Test

What we call interactive test is Wason’s rule discovery task [5].

Interactive test was carried out just as the original task as

mentioned before.

3.1.1 Calculation of Test Severity
There are various challenges in evaluating test severity. Firstly,

the set of all possible hypotheses (i.e. background knowledge) is

infinite. Secondly, humans cannot easily keep more than one

hypothesis at a time [6]. On the other hand, according to

Poletiek, a severe tester will not consciously formulate all

hypotheses one by one, yet he/she will be able to make a globally

accurate estimation [6]. Hence, it is not necessary to generate

explicitly all possible alternatives in order to generate a more or

less severe test.

In order to calculate test severity we followed the method

employed by Poletiek in [6]. We took the set of hypotheses,

generated by the subjects during our interactive tests, as the

plausible set of hypotheses (i.e. background knowledge). For each

instance given by the subject (i.e. test made by the subject), we

followed the following procedure:

 If the test is positive (i.e. the instance given by the

subject conforms to the rule to be discovered), then we

took the number of hypotheses that are eliminated by

the test as severity of the test. In other words, the

hypotheses to which the given instance does not

conform are taken into account.

 If the test is negative (i.e. the instance given by the

subject does not conform to the rule to be discovered),

then we took the number of hypotheses to which the

given instance conforms, as severity of the test.

Table 1 shows the set of plausible hypotheses we generated using

the rules announced by the subjects during our interactive tests.

Our set of plausible alternatives consist of 27 hypotheses, hence

severity of each instance given by a subject is within the range [0,

27].

3.1.2 Vincent Curves
As Wason defines in [5], Vincent curves represent performance of

subjects towards a criterion, which is not defined by fixed number

of trials. During interactive tests, total number of instances given

before discovery of the correct rule varies from one subject to

another. Hence, Vincent curves can be used to visualize the

change in test severity of a group of subjects until the correct rule

is discovered. Although, there are variants of Vincent curves, we

use the original method proposed by Vincent as follows:

 Total number of instances given by each subject in the

group is divided into N equal fractions.

 Within each fraction, we calculate the average of test

severities of the instances that fall into that fraction.

This calculation is done for each subject in the group.

For N equal fractions, N+1 data points are obtained per subject.

The average of the ith data point of all subjects gives the ith data

point for the group of subjects, where i = 1, 2,…, N+1.

We have selected total number of fractions (N) to be equal to the

minimum number of instances given within the group before

discovery of the correct rule. For number of instances which are

not divisible by N, we used Vincent’s original procedure. For

instance, the division of 22 instances given by each subject among

5 fractions would be 5, 5, 4, 4, 4. In other words, 2 additional

instances are distributed one by one, starting from the first

fraction.

3.2 Written Test

Written test is based on Wason’s selection task [7]. There are

three different types of questions in the written test which are

abstract questions, thematic questions and questions with software

development theme.

Abstract questions require pure logical reasoning to be answered

correctly; however some of this type of questions can also be

answered correctly by matching. In our test, there are 8 abstract

questions.

Thematic questions can be answered correctly using the cues

produced by memory. This phenomenon where the stage of

logical reasoning is bypassed is called memory cueing [8]. In our

test there are 6 thematic questions which can be solved correctly

through everyday life experience.

Questions with software development/testing theme are also

thematic questions where pure logical reasoning can be bypassed

by experience in software development and testing. Our test

contains 8 questions of this type.

3.2.1 Determination of Existence of Matching Bias
Matching bias detection and classification of subjects as being

falsifier, verifier or matcher can be done using abstract test results.

In order to detect the existence of matching bias among subjects

and classify them, we used all negated variants of Wason’s

original selection task.

 If there is a D on one side of the card, then there is a 3

on its other side

3

 If there is a D on one side of the card, then there is not

a 3 on its other side

 If there is not a D on one side of the card, then there is

a 3 on its other side

 If there not is a D on one side of the card, then there is

not a 3 on its other side

Table 1. The plausible set of hypotheses used for test severity

calculation

1 Integers ascending with increments of 2

2 Integers ascending with increments of k, where k = 1,2,...

3
Three integers in ascending order such that the average of

the first and third integer is the second integer

4
The average of the first and third integer is the second

integer

5 Even integers ascending with increments of 2

6
Integers ascending with increments of m = 2k, where k =

1,2,3, …

7
Integers ascending or descending with increments of m =

2k, where k = 1,2,3, …

8 Even integers in ascending order

9 Positive even integers in ascending order

10 Three even integers in any order

11 Three integers in any order, none of them are identical

12
Three integers in any order, two or three of them are

identical

13
Three integers in ascending order such that difference

between third and first number is even

14
Integers ascending or descending with increments of k,

where k = 1, 2, 3, …

15 Sum of the first and second integer is the third integer

16 The triples of the form (2n 4n 6n), where n = 1,2,3, …

17 The triples of the form (n 2n 3n), where n = 1,2,3, …

18 Second integer is greater than the first one

19 Third integer is greater than the first integer

20 Difference between the third and the first integer is even

21 Greatest common divisor (GCD) of the integers is 2

22
Ascending integers such that each integer is 1 less than a

prime number

23 Any three rational numbers

24 Positive real numbers in increasing order

25 Positive integers in increasing order

26 Three integers whose sum is even

27 Three even integers greater than zero

3.2.2 Falsifier/Verifier/Matcher Classification
As previously mentioned, given the conditional rule of the form if

P, then Q, the subject who selects P, Q as the answer can either be

a verifier or matcher. Similarly, the same answer for the rule if P,

then not-Q, means that the subject can be a falsifier or a matcher.

In order, to overcome this fuzziness, we employ the method of

Reich and Ruth [14], which is explained below as follows:

 choice of not-Q in the rule "If P, then Q" = falsifying

 choice of not-Q in the rule "If P, then not Q" = verifying

 choice of P in the rule "If not P, then Q" = matching

 choice of not-Q in the rule "If not-P, then Q" =

falsifying

 choice of P in the rule "If not P, then not Q" = matching

 choice of not-Q in the rule "If not P, then not Q" =

verifying

This method of determining response tendencies is advantageous,

as it does not confound strategies that might have contributed to a

particular selection. However, it neglects a large proportion of

data provided by the subjects. On the other hand, it gives a

general view about the subjects’ responses and it is the only

classification strategy we came across in the existing psychology

literature. For these reasons, we used the method of Reich and

Ruth and we labeled subjects, whom we could not classify, as

None.

4. METRICS
In order to perform empirical analysis, we also defined some

metrics, in addition to the metrics and methodologies we inherited

from cognitive psychology literature. Other than Wason’s

eliminative/enumerative index (IndElim/Enum), the remaining metrics

have been defined by us.

Among interactive test metrics, total time it takes to discover the

correct rule (TI) and total number of rule discovery attempts (NA)

are performance metrics. On the other hand, frequency of

immediate rule announcements (FIR), average length of

consecutive immediate rule announcements (avg_L IR) and

average frequency of reason repetition/reformulation (avg_F RR)

are supposed to measure the extend of experimental procedure

violation. The experimental procedure does not allow immediate

rule announcements. However, during interactive tests some

subjects made immediate rule announcements, although they had

been told the experimental procedure at the beginning.

Written test metrics measure performance in different sections of

the written test. These are the score in abstract questions (SABS),

thematic questions (STh) and questions with software

development/testing theme (SSW) respectively. Each score metric

is calculated as the ratio of the number of correctly answered

questions to the total number of abstract questions. In addition,

total duration it takes to solve thematic and abstract sections

(TTh+ABS) and the duration it takes to solve the sections with

software development/testing theme (TSW) are among written test

metrics. All of the metrics are given in Table 2 together with their

explanations.

4

5. DATA
We conducted both interactive and written tests to two different

groups of subjects.

The first group (Group 1) consists of 28 computer engineering

graduate students of Bogazici University. 14 of the subjects in

Group 1 have software development experience in various

companies for more than 2.51 years on average. Among subjects

having software development experience above 2.51 years, 6 of

them are still active and they are developing embedded software

for RoboCup, which is an international robotics competition

founded in 1993.

Members of Group 2 are software developers/testers working in a

large scale telecommunication company in Europe. Unlike

subjects of Group 1, this group of subjects has only undergraduate

degrees in Computer Engineering, Mathematics and related fields.

There are two different project groups within Group 2. The first

project group, which employs traditional waterfall software

development methodology, consists of 28 subjects. Among these

28 subjects, 12 of them are developers, while 16 of them are

testers. The second project group consists of 8 subjects who

develop software using TSP/PSP methodology.

Table 2. Interactive and written test metrics with their

abbreviations

1 Abbr. stands for "Abbreviation”.

6. RESULTS
This section consists of two parts. In the first part, the effects of

factors such as education, experience in software

development/testing and software development methodologies, on

confirmation bias are analyzed. In the second part, we investigate

the effects of confirmation bias on software development and

testing.

6.1 Analysis of the Factors Affecting

Confirmation Bias:

6.1.1 Effect of Education on Confirmation Bias
As shown in Figure 1, according to Reich and Ruth’s

classification method, there are more falsifiers and less verifiers in

Group 1, compared to Group 2. These results imply that subjects

of Group 1 exhibit lower confirmation bias levels. In addition,

existence of matchers only in Group 2 (13.16% of Group 2

population) supports the fact that members of Group 1 use more

logical reasoning. These results are in favor of Group 1 members,

who are graduate computer engineering students and obliged to

take theoretical computer science courses according to the

graduate curriculum. It is highly probable that these courses

helped Group 1 members to gain skills to perform logical

reasoning, since they frequently experienced the fact that a given

statement does not always have to be true and hence it may

require to be disproved. In other words, Group 1 members have

been trained to lower their confirmation bias levels through

courses that require logical reasoning.

Figure 1. Distribution of falsifiers, verifiers, and matchers in

Group 1 and Group 2 according to Reich and Ruth’s method.

6.1.2 Effect of Software Development/Testing

Experience on Confirmation Bias
In order to see how confirmation bias levels are affected by

experience in software development/testing, we performed three

different analyses. In our first analysis, we compared interactive

and written test metric values of two subgroups within Group 1.

The first subgroup (Group1_EXP) consists of subjects who have

worked in software development industry for more than or equal

to 2.51 years, which is the average years of experience among

Group 1 members. The rest of the subjects are categorized under

the second subgroup (Group1_NEXP). In order to compare

interactive and written test metric values of Group1_EXP and

Interactive Test Metrics

Abbr.1 Metric Explanation

IndElim/Enum Wason’s eliminative/enumerative index [5]

TI Total time it took to discover the correct rule

FRR Immediate rule announcement frequency

avg_L IR

Total number of rule announcements in a series,

where no instances are given in between rule

announcements

avg_FRR

Average frequencies of reason repetition/

reformulation

NA

Total number of rule discovery attempts

including the correct rule announcement

Written Test Metrics

Abbr. Metric Explanation

SABS Score in abstract questions

STh Score in thematic questions

TTh+ABS
Duration it took to solve abstract and thematic

questions (minutes)

SSW
Score in questions with software

development/testing theme

TSW
Duration it took to solve questions with software

development/testing theme (minutes)

5

Group1_NEXP, we performed bootstrapped Kolmogorov-

Smirnov test. As shown in Table 3, the only significant difference

obtained is in the scores of the written test with software

development and testing theme (SSW). Members of group who

have experience in software development/testing scored

significantly higher, since in written test they used their software

development knowledge gained through experience, in addition to

logical reasoning.

In the second analysis, we employed the Reich and Ruth

categorization method. The distribution of falsifiers and verifiers,

as well as those that could not be categorized is shown in Figure

2. 64.29% of experienced members in Group 1 and 57.29% of

members of Group 1 with less experience are falsifiers. However,

21.43 % of experienced Group 1 members and 7.14% of less

experienced members are verifiers. These distribution results

imply no significant difference among experienced and less

experienced members of Group 1.

In the third analysis, we statistically compared experienced

members of Group 2 (Group2EXP) and less experienced Group 2

(Group2NEXP). As shown in Table 4, no significant difference was

found among the members of Group2EXP and Group2NEXP.

Group2NEXP consist of Group 2 members who have less than 5.71

years which is the average years of experience in software

development/testing among Group 2 members

Table 3. Results of the bootstrapped Kolmogorov-Smirnov test

among experienced and less experienced members of Group 1.

6.1.2.1 Effect of Activeness in Software

Development/Testing
In addition to experience, the effect of activeness in software

development/testing, on confirmation bias needs to be explored.

For this purpose, we divided experienced members of Group1

(Group1EXP) into two subgroups, namely Group1ACTIVE and

Group1INACTIVE. Group1ACTIVE consists of computer engineering

graduate students who has experience in software

development//testing and who are still developing/testing

software. The members of this group develop embedded software

for autonomous robots. The rest of the Group1EXP members are

not active in software development/testing anymore and they are

Table 4. Results of the bootstrapped Kolmogorov-Smirnov test

among experienced and less experienced members of Group 2.

mostly engaged in research studies. Table 7 shows the statistical

comparison of the metric values for Group1ACTIVE and

Group1INACTIVE. As it can be seen, no significant difference has

been observed in metric values within the 0.05 significance level.

Figure 2. Distribution of falsifiers, verifiers, and matchers

among the experienced and less experienced members of

Group 1 according to Reich and Ruth’s method.

We have also categorized members of Group1ACTIVE and

Group1INACTIVE separately as falsifiers, verifiers and matchers

according to Reich and Ruth’s method. In both subgroups,

subjects that could not be categorized according to the Reich and

Ruth’s scheme are labeled as None. As previously mentioned and

shown in Figure 1, no matchers were found among the members

of Group 1. Hence, we cannot observe any matchers in Figure 2

either. However, results seem in favor of Group1INACTIVE

members, as a higher portion of Group1INACTIVE population is

falsifiers and a lower portion of the population is verifiers when

 Group 1EXP Group 1NEXP p-value

IndElin/Enum 1.3029 0.6538 0.3775

TI 8.6429 6.6923 0.1310

FIR 0.1429 0.6124 0.1150

avg_L IR 0.1429 0.2692 0.2205

avg_FRR 0.6786 0.9746 0.5455

NA 1.7857 2.6154 0.5365

SABS 0.5914 0.6350 0.7195

STh 0.8823 0.9064 0.5405

TTh+ABS 15.0714 12.7857 0.2740

SSW 0.8308 0.7186 0.0010

TSW 11.1429 12.3571 0.2865

 Group 2EXP Group 2NEXP p-value

IndElin/Enum 1.11 1.12 0.6899

TI 18.06 16.59 0.3874

F IR 1.00 0.67 1.0000

avg_L IR 0.55 0.53 1.0000

avg_F RR 1.17 0.80 0.8644

NA 3.61 2.18 0.1170

SABS 0.19 0.13 0.3874

STh 0.72 0.71 0.9313

TTh+ABS 18.12 14.5 0.2336

SSW 0.46 0.53 0.9303

TSW 17.59 14.41 0.3874

6

compared to the falsifier and verifier portions within the

Group1ACTIVE population.

When we consider Figure 1 and Figure 3 together, we can make

the following observation: Among groups of subjects that consist

of members active in software development/testing, lower portion

of falsifiers and higher portion of verifiers are observed. This is an

undesired situation as it implies high confirmation bias levels. In

order to further investigate this claim of ours we conducted the

following analysis: We removed 6 members who are still active in

software development/testing from Group 1. We named the

resulting group as Group 1’. We used Reich and Ruth’s

categorization method on the members of this group and

compared the distribution of falsifiers, verifiers and matchers

within Group 1’ with the one in Group 2. Figure 4 shows the

resulting categorization scheme, where higher portion of Group 1’

population is falsifier; whereas verifiers form a lower portion,

compared to the falsifier and verifier portions of Group 2.

During our analysis, we took into account only 12 developers of

Group1 who develop software based on waterfall methodology

and named this subgroup as Group2REGULAR. As shown in Table

6, no significant statistical difference. As we can see in Figure 5,

according to Reich and Ruth classification scheme, a higher

portion falsifiers and a lower portion of verifiers are observed in

Group2REGULAR compared to falsifier and verifier portions in

Group2TSP/PSP population. These results seem in favor of

Group2REGULAR. However, 8.33% of Group2REGULAR are matchers,

who cannot excel logical reasoning. Moreover, in both subgroups

Group2REGULAR and Group2TSP/PSP, a high portion of

uncategorized subjects are observed.

Figure 3. Distribution of falsifiers, verifiers, and matchers

among the experienced active and experienced inactive

members of Group 1 according to Reich and Ruth’s method.

6.1.3 Effect Waterfall and TSP/PSP Software

Development Methodologies on Confirmation Bias
In order to analyze the effect of waterfall and TSP/PSP software

development methodologies, we statistically compared the

interactive and written test metric values for two subgroups within

group 2. As mentioned previously, 28 members of Group 1 are

software developers/tester assigned to a software development

projects using the regular waterfall methodology. Remaining 8

members of Group 2 (Group2TSP/PSP) are responsible from a pilot

software development project following TSP/PSP methodology.

Among members of TSP/PSP group, 3 of them gave up the

interactive test before discovering the correct rule. The interactive

test metrics TI and NA can be measured only when a subject

succeeds to discover the correct rule. Only 5 values for each

metric exist, which is unlikely to give accurate results. Hence,

during statistical comparison of metric values among these two

groups, TI and NA metrics have been excluded.

Table 5. Results of the bootstrapped Kolmogorov-Smirnov test

among experienced members of Group 1, that are active in

software development/testing and those that are not.

Figure 4. Distribution of falsifiers, verifiers, and matchers

among members of Group 1 and Group 2 according to Reich

and Ruth’s method.

During our analysis, we took into account only 12 developers of

Group1 who develop software based on waterfall methodology

and named this subgroup as Group2REGULAR. As shown in Table

6, no significant statistical difference. As we can see in Figure 5,

according to Reich and Ruth classification scheme, a higher

portion falsifiers and a lower portion of verifiers are observed in

Group2REGULAR compared to falsifier and verifier portions in

Group2TSP/PSP population. These results seem in favor of

Group2REGULAR. However, 8.33% of Group2REGULAR are matchers,

who cannot excel logical reasoning. Moreover, in both subgroups

 Group1ACTIVE Group1INACTIVE p-value

IndElin/Enum 0.9160 1.5178 0.4505

TI 10.4000 7.6667 0.7160

FIR 0.0000 0.2222 0.0505

avg_L IR 0.0000 0.2222 0.0515

avg_FRR 1.1000 0.4444 0.3890

NA 1.2000 2.1111 0.6920

SABS 0.5870 0.5300 0.5780

STh 0.8600 0.8667 0.3595

TTh+ABS 16.6667 14.7778 0.5870

SSW 0.8417 0.7689 0.3350

TSW 12.6667 10.1111 0.4910

7

Group2REGULAR and Group2TSP/PSP, a high portion of

uncategorized subjects are observed.

Figure 5. Distribution of falsifiers, verifiers, and matchers

among members of Group2REGULAR and Group2TSP/PSP

according to Reich and Ruth’s method.

Table 6. Results of the bootstrapped Kolmogorov-Smirnov test

among members of Group2REGULAR, and Group2TSP/PSP .

6.2 Analysis of the Effects of Confirmation

Bias on Software Development and Testing

Performances

6.2.1 Effect of Confirmation Bias on Software

Development Performance
We performed an analysis among 28 members of Group 1, who

are all belong to a project group responsible from the

development of the customer services software package. Within

this project group, which develops software according to the

traditional waterfall methodology, software testing team consists

of 11 software testers, while the remaining 17 subjects are

software developers. Every two weeks, a new release of the

software is delivered and hence testing phase of one release and

the development phase of the next release overlap. In this study,

we analyzed 10 releases of the software that were developed and

tested between the last week of May 2009 and second week of

November 2009. For each release, we categorized each file to be

defected or not based on the results of the testing phase for that

release. Moreover, a file that was updated or created within a

specific release but not updated during the following releases, was

also categorized as defective if defects were found in that file

during the testing phase of the following releases. For defects

detected within a file during each testing phase, developers who

created and updated that file before that testing phase were held

responsible.

Based on the commit history of the files comprising the software

package, we discovered that most of the files were updated by

more than one developer. In other words, each file is developed

by a group of one or more developers. As a result of churn data

analysis, we found 124 developer groups and for each developer

group we evaluated the defected file percentage among all the

files created or updated by that group. Defected file percentage of

each group is the measure we have selected to assess performance

of each group of software developers. For each developer group,

we also evaluated the average, minimum and maximum values of

the 11 confirmation bias metrics that were listed in Table 4. In

addition to confirmation bias metrics, we took into account the

average, minimum and maximum test severity values to assess the

hypotheses testing performance of a subject during the interactive

test. Our method to evaluate the confirmation bias related

parameters can be formulated as follows:

N

EnumEIndX
...1

lim/1
N

EnumEIndX ...1

lim/2

N

ITX ...1

3 NIRFX
...1

4

 NIRLavgX
...1

5 _ NRRFavgX
...1

6 _

N

ThSX
...1

9
N

ABSThTX
...1

10

N

SWSX
...1

11
N

SWTX
...1

12

N

avgtyTestSeveriX
...1

13

N
tyTestSeveriX

...1

min14

N
tyTestSeveriX

...1

max15)1(

N

X

N

X

X

N

i

i
N

i

i

avg

1

15

1

1

...
)2(

Each X2-X12 are the confirmation bias metrics given in Table 2,

while X1 is elimination/enumeration index taking into account

only the last rule announcement instead of every rule

announcement made by the subject. Finally, X13, X14 and X15 are

respectively average, minimum and maximum test severities of

each developer in a given group.

Having evaluated confirmation bias related parameters of

 Group2REGULAR Group2TSP/PSP p-value

IndElin/Enum 1.1192 1.0938 0.5630

FIR 1.1667 0.5000 0.2865

avg_L IR 0.6250 0.5000 0.2930

avg_FRR 1.1458 0.7500 0.3480

SABS 0.2942 0.3287 0.4875

STh 0.8192 0.7913 0.3995

TTh+ABS 16.5000 14.1250 0.5765

SSW 0.6483 0.5800 0.4990

TSW 16.5833 12.5000 0.5325

8

developer groups, we performed multi-linear regression modeling

to find the relation between confirmation bias and percentage of

defected files.

 Xy)3(

Table 7. The values of regression coefficients with their

confidence intervals.

Since the existence of linear dependency leads to matrix

singularity problem, we performed principal component analysis

(PCA). Hence, we constructed a multiple linear regression model

with 5 parameters (i.e. β2 , β3 , β4 , β5 , β6) which are the linear

combinations of average confirmation bias related parameters

(i.e. X = Xavg) The coefficients for the resulting parameters that

turned out to significantly contribute to the model together with

their confidence intervals at α = 0.05 significance level, are shown

in Table 7. The R2 statistic is 0.4477 and the adjusted R2 statistic

is 0.4243 which implies that about 42% of the variability in defect

percentage is explained by the parameters given in Table 7. If we

take into account the fact that defect rate is affected by process

and many human attributes other than confirmation bias the

results obtained are quite significant.

6.3 Analysis of the Effects of Confirmation

Bias on Tester Performance

In this part of our work, we analyzed the effect of confirmation

bias on tester performance. For this purpose, we inherited two

tester performance metrics from tester competence reports of the

company among whose employees are members of Group 2.

These metrics are the number of bugs reported (NBUG) and the

number of production defects caused (NPROD_DEF) by each tester

respectively. Production defects are the defects that could not be

detected by testers during testing phase and they are revealed by

customers after the software is released. We grouped members of

Group 2 based on the values of NBUG and NPROD_DEF.

Figure 6 shows the Vincent Curves for test severity values of two

groups of testers. Testers are grouped according to the number of

bugs reported by them as testers reporting above and below

average number of bugs. On the contrary to what we have

expected, group of testers reporting bugs below average value had

exhibited a more strategic approach during interactive

confirmation bias tests. This group of testers starts with a low

level severe test and they progressively exclude more alternatives

[6]. Moreover, starting from the second percent of the instances

given during the interactive tests, test severity of the tester group

having NBUG value lower than average is always higher than that

of the other group. In other words, for each instance given by

members of this group during the interactive test more alternative

hypotheses are eliminated. We can make an analogy between the

testing strategies exhibited by the members of this group during

interactive confirmation bias tests. The testers with NBUG value

below average seem to run tests that eliminate more software

failure scenarios during the software testing phase. However, such

a behavior is an expected result in finding more of the bugs in the

code.

Figure 6. Vincent curves for test severity of testers who report

bugs above and below average respectively.

In order to explain this, we analyzed the relationship between

total number of bugs reported (NBUG) and total number of

production defects caused by each tester (NPROD_DEF). The

Spearman correlation value between these two variables is

0.8234, where +1 or -1 occurs when each of the variables is a

perfect monotone function of the other. As shown in Figure 8,

while the total number of bugs reported by a tester increases, total

number of production defects introduced by that tester also

increases.

High correlation between total number of reported bugs and

production defect count may indicate another phenomenon,

namely, testers who report more bugs might be assigned codes

with very high defect density requiring immense testing effort.

However, for each tester there is also a time pressure to end the

testing procedure and this may result in the deployment of the

defected codes. Another explanation for the outcome shown in

Figure 8, is that bugs are not classified according to their

severities. Hence, large number of reported bugs does not

necessarily mean that a significant portion of severe bugs has been

reported.

Moreover, as shown in Figure 10 testers who report bugs more

than the average number of reported bugs (NBUG_above average) are

less likely to follow a testing strategy in terms of test severity

during interactive tests. A reasonable testing strategy suggested by

Poletiek is to start with a low level severe test and to progressively

increase test severity [6]. The test severity curve of testers who

report bugs less than the average, is in line with Poletiek’s testing

strategy compared to the curve of the testers who report bugs

below average. In addition, when the percentage of total instances

given by subjects during the interactive test exceeds 10%, the test

severity of testers who report bugs below average is always

higher.

This outcome of interactive test suggests that the testers are more

likely to follow Poletiek’s testing strategy during software testing,

Coefficient
Coefficient

Value

Confidence

Interval

p value

β1 6.5669 6.0569 - 7.0688 1.0791E-12

β2 0.2696 0.0507 - 0.4896 0.0162

β3 -0.1472 -0.4809 - 1.1866 0.3843

β4 1.4814 1.0971 - 1.8657 6.543E-12

β5 0.6248 0.0496 - 1.2000 0.0335

β6 -1.2697 -1.9005 - -0.6309 1.167E-4

9

so that initially less severe tests are made. Hence fewer bugs are

detected, yet tester gains an idea about the sections of the code

that must be tested and possible defect types. As a result, tester

can increase the severity of his/her tests which leads his/her

finding more bugs that are severe.

Figure 8. High correlation between production defect and total

number of reported bugs (Spearman rank correlation: 0.8234)

Figure 9. Distribution of falsifiers, verifiers, and matchers

among testers who report bugs above and below average

amount, according to Reich and Ruth’s method.

Finally, as shown in Figure 9, all falsifiers are among testers who

report bugs below average, whereas a higher portion of the testers

who report bugs above average are verifiers. This result brings

about the possibility that testers who report bugs above average

exhibit more tendency to verify that production defects do not

exist in the codes they test. Therefore, they exhibit confirmation

bias in this sense.

The distribution of falsifiers, verifiers and matchers for testers

who cause production defects above and below average is also in

line with the distribution given in Figure 11. In addition, as shown

in Figure 10, test severity curves for testers who cause production

defects below and above average exhibit a behavior similar to the

curves in Figure 6.

6.4 Threats to Validity
We would like to address internal, external, construct, and

statistical validity.

In terms of internal validity, our quasi-independent variables are

experience, education, activeness in software development, and

software development methodology. The measures for these

variables, which are confirmation bias metrics were taken within a

week for both Group 1 and Group 2. Moreover, within any of the

groups there was no event in between the confirmation bias tests

that can affect subjects’ performance.

However, problem may arise due to different experimental

conditions. For instance, compared to graduate computer

engineering students, stress factor of company workers due to the

fact that they always have to rush the next release may have

biased the results. In order to avoid mono-operation bias as a

construct validity threat, we used more than a single dependent

variable. We extracted metrics from both written and interactive

tests as well as Wason’s elimination/enumeration index [5]. As a

result, we have avoided under-representing the construct and got

rid of irrelevancies.

We have used two datasets to externally validate our results. We

will continue expanding the size and variety of our dataset going

forward.

Figure 10. Vincent curves for test severity of testers who cause

production defect above and below average respectively.

Figure 11. Distribution of falsifiers, verifiers, and matchers

among testers who cause production defects above and below

average amount, according to Reich and Ruth’s method.

We used bootstrapped Kolmogorov-Smirnov tests to statistically

validate our results. We used this test since we do not have any

prior knowledge of the distribution of the metric values and the

underlying distributions are discontinuous.

10

7. CONCLUSION AND FUTURE WORK
During all levels of software testing the attempt should be to fail

the code to reduce software defect density. In an early work,

Teasley et al. empirically showed that people have more tendency

to make positive tests rather than negative tests during software

testing phase due to confirmation bias [8].

In order to empirically analyze the effect of confirmation bias on

software defect density, we need to measure/quantify confirmation

bias. In this study, we prepared both interactive and written tests

based on Wason’s experiments that have been replicated for

decades. However, unlike other disciplines, to the best of our

knowledge, Wason’s experiments have not been used in the field

of software testing and development. Having performed our tests

to testers and developers of a large scale telecommunication

company in Europe as well as a group of computer engineering

graduate students, we analyzed these test results based on the

existing work in the cognitive psychology literature as well as the

metrics we defined. Our results can be summarized as follows:

 Confirmation bias levels of individuals who have been

trained in logical reasoning and mathematical proof

techniques are significantly lower. In other words,

given a statement such individuals show tendency to

refute that statement rather than immediately accepting

its correctness.

 A significant effect of experience in software

development/testing has not been observed. This

implies that training in organizations is focused on tasks

rather than personal skills. Considering that the

percentage of people with low confirmation bias is very

low in the population [5, 6, 7], an organization should

find ways to improve basic logical reasoning and

strategic hypothesis testing skills of their software

developers/testers.

 Individuals, who are experienced but inactive in

software development/testing, score better in

confirmation bias tests than active experienced software

developers/testers. This implies that companies should

balance work schedule of testers similar to jet pilots and

allow them periodically to take some time off the

regular routine.

 Another finding is that we do not observe any difference

in confirmation bias levels in favor of the TSP/PSP

team. This raises a question on the validity of models

such as TSP/PSP that are promising defect free and high

quality software development.

 High levels of defect rates introduced by software

developers are directly related to confirmation bias.

 High levels of confirmation bias among software testers

are very likely to result in an increase in the number of

production defects.

As future work, we plan to extend our dataset and replicate this

study in other software development companies. Moreover we

will construct software defect prediction models that use

confirmation bias metrics as people related set of metrics in

addition to product and process metrics. It is highly probable that

confirmation bias metrics would improve the prediction

performance of learning based defect prediction models which we

have been building over a decade.

8. ACKNOWLEDGMENTS
This research is supported in part by Turkish Scientific Research

Council, TUBITAK, under grant number EEEAG108E014.

8. REFERENCES
[1] Stacy, W. and MacMillan, J., 1993. Cognitive bias in

software engineering. Communication of the ACM. 38, 6

(June 1995), 57-63. DOI=

http://doi.acm.org/10.1145/203241.203256

[2] Kahneman D., Slovic P., and Tversky, A. (Eds.) 1982

Judgment Under Uncertainty: Heuristics and Biases. New

York: Cambridge University Press ISBN 978-0521284141

[3] Tversky, A. and Kahneman, D. 1971. Belief in the law of

small numbers. Psychological Bulletin, 76, 105-110.

[4] Parsons, J. and Saunders, C., IEEE Transactions on Software

Engineering. 30, 12 (December 2004), 873-888.

[5] Wason, P. C. 1960. On the failure to eliminate hypotheses in

a conceptual task. Quarterly Journal of Experimental

Psychology (Psychology Press), 12. 129–140.

[6] Poletiek, F. 2001 Hypothesis Testing Behavior (Essays in

Cognitive Psychology). Psychology Press Ltd.

[7] Wason, P. C. 1968. Reasoning about a rule. Quarterly

Journal of Experimental Psychology (Psychology Press) 20:

273–28.

[8] Teasley, B., Leventhal, L. M., and Rohlman, S. Positive test

bias in software engineering professionals: What is right and

what’s wrong. In Empirical Studies of Programmers: Fifth

Workshop, C.R. Cook, J.C. Scholtz, and J. C. Spohrer,

Eds.1993.

[9] Evans, J. St. B. T., Newstead, S. E. and Byrne, R. M. 1993

Human Reasoning: The Psychology of Deduction.East

Sussex, U.K.: Lawrence Erlbaum Associates Ltd. ISBN

0863773141

[10] Reich, Shuli, S. and Ruth, Pauline. 1982. Wason’s selection

task: verification, falsification and matching. British Journal

of Psychology, 73, 395-405.

[11] Cosmides, L. (1989). The logic of social exchange: Has

natural selection shaped how humans reason ? Studies with

Wason's selection task. Cognition. 31, 187-276.

[12] Manktelow, K. I. and Evans, J. St. B. T. (1979). Facilitation

of reasoning by realism: Effect or non-effect? Biritish

Journal of Psychology, 70, 477-488.

[13] Cox, J. R. and Griggs, R. A. (1982). The effects of

experience on performance in Wason's selection task.

Memory and Cognition, 10, 496-502.

[14] Reich, S.S. and Ruth, P. (1982). Wason's selection task:

verification, falsification and matching. British Journal of

Psychology, 73:3, 395-404.

[15] Evans, J. St. B. T and Lynch, J. S. (1973). Matching bias in

the selection task. British Journal of Psychology, 64, 391-

397.

[16] Hilgard, E. R. 1938. A summary of alternative procedures for

the construction of Vincent curves. Psychology Bulletin, 35,

282-297.

11

http://doi.acm.org/10.1145/203241.203256
http://en.wikipedia.org/wiki/Special:BookSources/9780521284141
http://seyhan.library.boun.edu.tr/search~S5?/i0863773141/i0863773141/-3,-1,0,E/2browse

