
Open Research Online
The Open University’s repository of research publications
and other research outputs

Towards a Metric Suite Proposal to Quantify
Confirmation Biases of Developers
Conference or Workshop Item

How to cite:

Calikli, Gul; Bener, Ayse; Aytac, Turgay and Bozcan, Ovunc (2013). Towards a Metric Suite Proposal to
Quantify Confirmation Biases of Developers. In: Empirical Software Engineering and Measurement, 2013 ACM /
IEEE International Symposium on, IEEE, pp. 363–372.

For guidance on citations see FAQs.

c© 2013 IEEE

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ESEM.2013.47
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6681380

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82981896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ESEM.2013.47
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6681380
http://oro.open.ac.uk/policies.html

Towards a Metric Suite Proposal to Quantify
Confirmation Biases of Developers

Gul Calikli and Ayse Bener
Data Science Laboratory

Mechanical and Industrial Engineering

Ryerson University

Toronto, ON, Canada

{gcalikli, ayse.bener}@ryerson.ca

Turgay Aytac
Prescience Inc.

West New York, NJ, USA

taytac@scidesktop.org

Ovunc Bozcan
Turkcell

Istanbul, Turkey

ovunc.bozcan@turkcellteknoloji.com.tr

Abstract—The goal of software metrics is the identification
and measurement of the essential parameters that affect software
development. Metrics can be used to improve software quality and
productivity. Existing metrics in the literature are mostly product
or process related. However, thought processes of people have a
significant impact on software quality as software is designed,
implemented and tested by people. Therefore, in defining new
metrics, we need to take into account human cognitive aspects.
Our research aims to address this need through the proposal of a
new metric scheme to quantify a specific human cognitive aspect,
namely “confirmation bias”. In our previous research, in order to
quantify confirmation bias, we defined a methodology to measure
confirmation biases of people. In this research, we propose a
metric suite that would be used by practitioners during daily
decision making. Our proposed metric set consists of six metrics
with a theoretical basis in cognitive psychology and measurement
theory. Empirical sample of these metrics are collected from two
software companies that are specialized in two different domains
in order to demonstrate their feasibility. We suggest ways in
which practitioners may use these metrics to improve software
development process.

I. INTRODUCTION

Software metrics provide a quantitative basis for the devel-
opment and validation of software development process. More
accurate schedule and cost estimates, better quality software
products, and higher productivity require effective software
management, which can be facilitated by the improved use
of software metrics.

Product metrics may measure the complexity of the soft-
ware design, the size of the final program (either source
or object code), or the number of pages of documentation
produced. [1]. Among most widely studied product metrics
are LOC (Lines of Code), Halstead’s metrics [2], McCabe’s
cyclomatic complexity [3] and function points [4]. These
metrics are critized due to the lack of a universal agreement
about what these metrics measure [1], [5]. Another set of
widely used product metrics consist of theoretically grounded
metrics of the Object-Oriented (OO) design by Kemerer and
Chidamber [6].

Process Metrics are measures of the software development
process such as overall development time, type of methodology
used or development history (i.e., churn) metrics.

Although the three pillars of software development are
Product, Process and People (3Ps), people-related metrics

are rarely addressed. In the literature, various people-related
metrics have been used to build learning-based models to
identify defect-prone parts of software. among such metrics
are organizational metrics [8], number of developers [9], [10],
developer experience [11], [12] and social interaction between
developers [13], [14]. However, these metrics are not directly
related with the thought processes of people or other cognitive
aspects. On the other hand, thought processes and cognitive
aspects of people are one of the fundamental concerns of
software development [21], [22].

In our previous research, we wanted to understand the
impact of the thought processes of people in determining
software defect proneness [15], [16], [17]. We focussed on
a specific cognitive aspect of people, namely “confirmation
bias”, which is defined as the tendency of people to seek
evidence to verify hypotheses rather than seeking evidence to
refute them. In order to measure confirmation bias, we defined
a methodology that is based on Wason’s grounded work in
cognitive psychology literature, namely “Wason’s Selection
Task” and “Wason’s Rule Discovery Task”. Having discovered
a correlation between confirmation bias levels of developers
and software defect density, we later used confirmation bias
values of developers to learn defect prediction models [18].
Our empirical results demonstrated that the thought processes
of people have a significant impact on the defect proneness of
software.

Due to confirmation bias, developers perform tests to make
their program work rather than to break their code. There are
similarities between Wason’s rule discovery task and functional
(black-box) testing performed by developers. Moreover, logical
reasoning skills, which Wason’s selection task aims to assess
are essential during unit testing activities, such as white-box
testing.

During our previous research, we conducted field studies
in large and medium-scale software companies both in Canada
and Turkey. As a result, we have become aware of the problems
encountered by practitioners during software development pro-
cess. During daily software engineering activities, practitioners
need metrics, which are simple and comprehensible enough to
guide them while making decisions under uncertainty. There-
fore, in this study, we propose a confirmation bias metric set to
facilitate practitioners’ decision making process about software
development activities. We can summarize the contributions of

2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement

978-0-7695-5056-5/13 $26.00 © 2013 IEEE

DOI 10.1109/ESEM.2013.47

363

2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement

978-0-7695-5056-5/13 $26.00 © 2013 IEEE

DOI 10.1109/ESEM.2013.47

363

this work as follows:

• A set of metrics that are constructed with a firm basis
in theoretical concepts in cognitive psychology. and
measurement theory.

• Presentation of empirical data from commercial
projects to illustrate the characteristics of these metrics
on real applications.

The rest of the paper is organized as follows: In Section
II, we present theoretical background about confirmation bias
and measurement theory. Details of our empirical study such as
data collection and the employed methodology are explained
in Section III. In Section IV we present the empirical study
results that aim to illustrate the characteristics of data from
software companies. We explain the practical implications of
the proposed metrics suite in Section V. Threats to validity are
addressed in Section VI. Finally, we mention future work and
conclude in Section VII.

II. THEORETICAL BACKGROUND

A. Confirmation Bias

In cognitive psychology, confirmation bias is defined as
the tendency of people to seek for evidence that could verify
their hypotheses rather than seeking for evidence that could
falsify them. The term confirmation bias was first used by
Peter Wason in his rule discovery experiment [19] and later in
his selection task experiment [20].

1) Wason’s Rule Discovery Task: The experimental proce-
dure of Wason’s Rule Discovery Task is as follows: Initially,
the subject is given a record sheet on which the triple of
numbers “2 4 6 is written and (s)he is told that 2 4 6 conforms
to a rule, which (s)he is supposed to discover. In order to
discover the rule, the subject is asked to write down triples
together with the reasons of his/her choice on the record sheet.
After each instance, the examiner tells the subject whether
the instance conforms to the rule or not. The subject can
announce the rule only when (s)he is highly confident. If
the subject fails to discover the rule at the first attempt,
(s)he can continue giving instances together with reasons for
his/her choice. This procedure continues iteratively until either
the subject discovers the rule or (s)he wishes to give up.
However, if the subject cannot discover the rule in 45 min,
the experimenter aborts the procedure.

Wason designed this experiment in such a way that once
the subject sees the triple “2 4 6”, a set of hypotheses is
formed in his/her mind. Most popular ones of such hypotheses
are as follows: “even numbers in ascending order”, “numbers
ascending with increments of two” , “numbers ascending with
constant increments”. [19], [15], [16], [17], [18]. Unless the
subject tries to refute such hypotheses after having gained
some confidence about the rule, it is unlikely to discover the
correct rule, which is “ascending numbers”.

2) Wason’s Rule Discovery Task in Relation to Developer
Performance: There are similarities between Wason’s rule
discovery task and functional (black-box) testing that are
performed by software developers to test the functional units of
their codes during unit testing [21]. According to the findings
of Wason’s rule discovery task, the subjects have a tendency

to select many triples (i.e., test cases) that are consistent with
their hypotheses and few tests that are inconsistent with them.
For instance, choosing triples such as “5 10 15”, “1 3 5” and
“3 6 9” would not be an effective way of testing the validity of
the hypothesis “numbers ascending with constant increments”.
One can test the validity of such an hypothesis only by giving
examples that have the potential to refute that hypothesis (i.e.,
“3 7 19”, “4 2 16”, “1 100 102”, etc.). Similarly, program
testers may select many test cases consistent with the program
specifications (positive tests) and a few that are inconsistent
with them (negative tests). Moreover, the number of possible
test cases is either infinite or too large to be tested within
a limited amount of time. Consequently, a strategic approach
must be followed that covers both positive and negative test
cases while trying to make the code fail during testing in order
to find as many defects as possible.

3) Wason’s Selection Task: In the original task, the subject
is given four cards, where each card has a letter on one side
and a number on the other side. These four cards are placed
on a table showing D, K, 3, 7, respectively. Given the rule
Every card that has a D on one side has a 3 on the other side,
the subject is asked which card(s) must be turned over to find
out whether the rule is true or false [20].

4) Wason’s Selection Task in Relation to Developer Per-
formance: Testing the correctness of conditional statements in
the source code during white box testing also requires logical
reasoning skills. In order to explain the analogy between
Wason’s selection task and white box testing, we extend a
simple example given by Stacy an MacMillian [22] as follows:
Suppose a developer wants to make sure that his/her program
avoids de-referencing a null pointer by always checking before
de-referencing. During unit testing, the developer would per-
form a test that could be thought of as checking the validity of
the following hypothesis: “If a pointer is de-referenced, then
it is checked for nullity. ” (If p, then q). Logical reasoning
allows us to categorize parts of the code that may need to be
tested as follows:

• Category #1: Parts of the code where a pointer is
checked for nullity. The pointer may or may not be
de-referenced in these code parts.

• Category #2: Parts of the code where a pointer is not
checked for nullity. The pointer may or may not be
de-referenced in those parts.

• Category #3: Parts of the code where a pointer is de-
referenced. The pointer may or may not have been
checked for nullity.

• Category #4: Parts of the code where a pointer is not
de-referenced. The pointer may or may not have been
checked for nullity.

It is important to determine whether every pointer is
checked for nullity in parts of the code, which belong to
category #3, since we know every pointer is dereferenced in
those parts of the code. It is also important to know whether
every pointer is dereferenced in parts of the code that belong to
category #2, since we know none of the pointers are checked
for nullity in those parts. On the other hand, we don’t need
to check whether every pointer is dereferenced in parts of the
code that belong to category #1, since we know every pointer

364364

is checked for nullity, and we don’t need to check whether
every pointer is checked for nullity in parts of the code that
belong to category #4, since we know none of the pointers
are dereferenced in there.

We can arrive the conclusion mentioned above by thinking
according to modus ponens: Given that p is true, “if p then q
is true only if q is true. The logical statements “if p then q”
and “if not-q then not-p” are equivalent. Therefore, given that
not-q is true, “if not-q, then not-p” is true only if not-p is true.
Based on these logical facts, one can conclude that parts of
the code, which belong to category #2 and category #3 need
to be checked in order to find out whether the program avoids
de-referencing a null pointer.

B. Measurement Theory

Metrics developed in empirical software engineering lit-
erature have been criticised due to the lack of a theoretical
base [1]. As a solution to this issue, Weyuker proposed a
formal set of criteria to evaluate software metrics [5]. Ke-
merer and Chidamber later used Weyuker’s proposed set of
measurement principles in order to analytically evaluate their
Object-Oriented (OO) design metrics [6]. Weyuker’s formal
list of desiderata for software metrics is based on the foun-
dations of measurement theory, which is a branch of applied
mathematics that is useful in measurement and data analysis.
Measurement theory attempts to describe, categorize, and
evaluate quality of the measurements, improve the usefulness,
accuracy and meaningfulness of measurements and propose
methods for developing new and better measurement instru-
ments [23]. Weyuker’s principles and hence the theoretical
base of Kemerer and Chidamber’s OO design metrics are based
on representational measurement theory. In representational
measurement theory, numbers are assigned to objects only if
objects are “quantifiable” and in order to be able to measure
an object, there must be a transformation from the empirical
relational system to the formal relational system. For instance,
if the objects are rigid rods, then lengths of rigid rods in the
empirical relation system can be transformed to real numbers
in the formal relational system. Hence, transformation of the
empirical relation “Rod A is longer than rod B” to the formal
relation becomes “8 inch rod 1 > 12 inch rod”.

Representational measurement theory is suitable for Ke-
merer and Chidamber’s OO design metrics. Since classes in
an object oriented code can be associated with numbers (e.g.
numbers of children of a class, depth of inheritance tree,
etc.). Representational theory requires the object to be “quan-
tifiable”. However, psychological variables, such as attitude,
ability, intelligence cannot be measured directly. For such
variables, classical measurement theory can be employed. The
classical measurement theory sustained the development of
most quantitative theories in psychology [24], [25]. Classical
measurement theory merely requires the attribute of the object
to be quantifiable, rather than the object itself. Confirmation
bias is also a psychological variable and hence it can be in-
ferred from other variables that are directly measured through
a mathematical model. Such variables are called “latent”
variables. An example of a widely invoked latent variable is
the concept of “intelligence”. We cannot measure intelligence
directly, however, we can imagine a quality that we call
“general intelligence” to make sense of patterns in scores on

TABLE I. PROPERTIES OF DATASETS

Dataset Number of Defect Number of
(Project) Active Files Rate Developers

Telecom1 826 0.11 10
Telecom2 1828 0.03 14

ERP 3199 0.07 6

tests that are believed to measure specific mental abilities [26].
Similarly, we measure confirmation bias through 6 metrics
indirectly from the scores and outcomes of our confirmation
bias test. Details of the confirmation test are given in Section
III-B.

III. EMPIRICAL STUDY

A. Data Collection

In this study, we used datasets from three different projects.
In Table I, the total number of maintained/developed files and
defect rates are listed for each dataset as well as the total
number of developers in each project group. The defect rate
is estimated as the ratio of the number of defective files to the
number of total active files. All three datasets contain JAVA
and JSP files, while dataset Telecom 2 also contains PL/SQL
files besides JAVA and JSP files.

Datasets Telecom1 and Telecom2 belong to the largest
wireless telecom operator (GSM) company in Turkey (and
the third largest GSM company in Europe). Project group
Telecom1 consists of 10 developers who are responsible for
the development of a software product that is used to launch
new campaigns. On average, 545 java files exist in a single
version, and developers make modifications to 206 files per
version (also on average). The total number of active files and
defect rates , which are listed in Table I for dataset Telecom1
belong to the four versions that were released between the
dates 07/02/2009 and 08/13/2009. Telecom1 project group
releases a new version of the software product every 10 days
on average.

Dataset Telecom2 comes from the billing and charging
software package, which has been developed and maintained
since the inception of the GSM company in 1994. Telecom2
project group consists of 14 developers. In Table I, information
about defect rates and total number of active files for project
Telecom2 correspond to four versions of the billing and charg-
ing software that were released between the dates 03/06/2011
and 05/08/2011. Software release period of project Telecom2
is every month on average.

Dataset ERP belongs to a project group that consists of
6 developers who are employees of the largest ISV (indepen-
dent software vendor) in Turkey. The software developed by
this project group is an enterprise resource planning (ERP)
software. The snapshot of the ERP software, which dates
from March 2011, was retrieved from the version management
system in order to estimate the corresponding defect rate and
total number of active files as shown in Table I.

B. Methodology

1) Preparation of Confirmation Bias Tests: Confirmation
bias test consists of written questions and an interactive
question. Interactive question is Wason’s Rule Discovery Task
itself [19], while written test is based on Wason’s Selection

365365

Task [20]. Written test consists of two parts 7 abstract and 7
thematic questions. Abstract questions require logical reason-
ing skills to be answered correctly, while real life experience
and/or memory cueing [27] can help to answer thematic
questions correctly.

2) Administration of Confirmation Bias Tests: Initially, we
administered confirmation test to a pilot group consisting of 28
Computer Engineering PhD candidates. Half of the participants
in the pilot group had at least two years of experience in
commercial software product development. The pilot study
was followed by the administration of the test to software
engineers in various large scale companies and Small Medium
Enterprises (SMEs). So far, we have administered the confir-
mation bias test to 199 software engineers (129 developers, 26
testers, 32 analysts and 12 project managers) fom 4 large scale
companies and 3 SMEs.

In order to collect confirmation bias metrics in a controlled
manner, we administered the confirmation bias test, which
consists of the interactive question and the written question
set, under a predefined standard procedure. The environment
where the confirmation bias test was administered was isolated
from noise and had adequate lighting.

In Wason’s studies related to his selection task, real packs
of cards were used. Most recent studies employ different
procedures such as describing the cards and the pictorial
representations of their visible sides with pencil and paper
or on a computer screen. Employing such procedures have
made insignificant differences in the results of the experiments
[27]. Moreover, it is possible to administer this part of the
confirmation bias test to a group of participants (instead
of individually). Therefore, we preferred to use the pencil-
and-paper approach rather than the traditional approach to
administer the part of the confirmation bias test, which is based
on Wason’s Selection Task.

During the interactive part of the confirmation bias test,
each participant answered the question in a separate room,
and there was one examiner to guide and give feedback
to each participant. Before the whole procedure started, the
participants were asked to consent to have their responses
recorded during the session. The goal of the voice recording
was to catch every detail about the way a participant thought
to discover the correct rule. Before starting the test, detailed
information was given about the procedure to discover the
correct rule.

3) Defining the metric set: We defined the metric set as
a natural extension of our previous study [18]. As a result,
we obtained a simple and comprehensible metric set that can
guide software practitioners while making decisions during
the software development process. In Table II, definition of
the confirmation bias metrics are given. Ideal and worst-case
values for each metric are given in Table III. Ideal value of a
metric is among the indications of low confirmation bias and
hence it is desirable that a confirmation bias metric is as close
to the ideal value as possible. On the other hand, worst-case
value of a metric is among the indications of high confirmation
bias.

4) Calculation of Group based Metrics Values: In this
study, the empirical results are group-based (i.e., the results
are based on confirmation bias metrics values of developer

TABLE II. CONFIRMATION BIAS METRIC SET

Metric Explanation Test Type

Eliminative/enumerative index by Wason [19] Interactive

Indelim/enum Total number of positive and compatible Interactive
InstCompatible instances

Rules/T ime Total number rules announced per unit time Interactive

AbsPartialInsight Partial Insight in abstract questions Written

STh Score in thematic questions Written

avgLIR Average length of immediate rule announce- Interactive
ments

TABLE III. IDEAL AND WORST-CASE VALUES FOR THE

CONFIRMATION BIAS METRIC SET

Metric Ideal Value Worst-Case Value

Indelim/enum Indmax
elim/enum 0

InstCompatible 0 Instmax
Compatible

Rules/Time 0.1 (Rules/T ime)max

AbsPartialInsight 0 1

STh 1 0

avgLIR 0 avgLIRmax

TABLE IV. DISTRIBUTION OF DEVELOPER GROUPS WITH RESPECT TO

GROUP SIZE FOR EACH DATASET

of Developers in Developer Groups
Dataset 1 2 3 4 5 6 Total
Telecom1 7 13 11 7 4 1 43
Telecom2 13 8 0 0 0 0 21
ERP 6 4 2 1 0 0 13

groups). We define “developer group” as one or more devel-
oper(s) who create/update the same set of source code files. We
used “average” operator to calculate group based confirmation
bias metrics values. Assuming that Adi represents the ith

confirmation bias metric value of dth developer, d ∈ Gj means
that dth developer is among the group of developers who
created and/or modified jth source file, and finally, Savgji
represents the resulting ith confirmation bias metric value of
jth source file when operator avg is applied. We can formulize
the definition for the “avg” operator as follows:

Savg
ji = Σd(Adi|∀d ∈ Gj)/Σd(1|∀d ∈ Gj) (1)

IV. EMPIRICAL STUDY RESULTS

In this section, we present our proposed metric suite by
giving the definition, theoretical basis and empirical results
of each metric. As mentioned previously, the empirical results
are group-based (i.e., the results are based on confirmation bias
metrics values of developer groups). We identified developer
groups for each project by mining log files that are obtained
from version management systems. Total number of developer
groups for each project are given in Table IV. Distribution of
developer groups with respect to group size (i.e., total number
of developers in a group) are also given in Table IV.

In this section, we compare confirmation bias levels of
developer groups of Telecom1, Telecom2 and ERP projects
by using our proposed metric suite. Our empirical results
show that confirmation bias metrics values of developer
groups, which belong to projects Telecom2 and ERP are
much closer to their corresponding ideal values compared
to metrics values of Telecom1 developer groups. As it can
be deduced from Table III, metrics AbsPartialInsight, STh

are in the range 0, 1 (i.e., 0 ≤ AbsPartialInsight ≤ 1 and
0 ≤ STh ≤ 1). We also mapped the values of the rest of
the metrics to the range [0, 1] in Figures, where we present

366366

percentage distribution of developer groups with respect to
each metrics values (i.e. Figures 1, 2, 3, 4, 5 and 6). For this
purpose, we divided value of each metric (i.e., Indelim/enum,
InstCompatible, Rules/T imes, avgLIR) by its maximum
value (i.e. Indmax

elim/enum, Instmax
Compatible, Rules/T imesmax,

avgLIRmax).

In Section II-A, we explained the hypothetical relation-
ship between developers’ testing behavior, and Wason’s Rule
Discovery and Selection Tasks. In this section, we also ex-
plain what type of information each metric may provide us
about developers’ unit testing activities, which may lead to
an increase in defect rates. In order to investigate the link
between confirmation bias and defect rates through testing,
we also interviewed with the project managers and developers
of Telecom1, Telecom2 and ERP projects.

Telecom1 is currently having serious problems with their
customers due to high amount of post-release defects. Accord-
ing to the interviews we conducted with developers and project
manager of this project group, developers’ testing activities
mainly consist of executing the test cases, which were previ-
ously prepared as part of the requirements analysis document.
Such type of tests can be classified as “positive tests”, since
during these tests developers try to validate whether specific
parts of the software conform to the corresponding use-cases
in the requirements document. After the unit tests, develop-
ers perform smoke tests (i.e., simple integration tests where
developers just check whether the system under test returns
normally and does not blow up when it is invoked). During
the interviews, the developers indicated that they employed
negative tests only when a new functionality is introduced to
the software. Since Telecom1 project group launches a new
release every 10 days, new functionalities are rarely introduced
to the software. Therefore, tests which focus on “What might
go wrong?” (i.e., negative tests) are rarely conducted.

Telecom2 and ERP projects have not experienced a soft-
ware quality-related crisis, that is as serious as the crisis that
is currently encountered by Telecom1 project. As it can be
seen from the snapshots in Table I, pre-release defect rate
of Telecom2 and ERP projects are lower than defect rate of
Telecom1 project. Telecom2 and ERP projects are mission
critical, since their software products contain modules such
as billing, charging and revenue collection. Therefore, it is
crucial for developers and project managers of Telecom2 and
ERP that the testing strategies they employ are efficient and
effective. During the interviews, Telecom2 and ERP project
developers indicated that negative tests are important to explore
“What might go wrong?”. Negative tests are part of developers’
testing routine in addition to the tests to validate use-cases in
the requirements analysis documents. In some cases some neg-
ative test scenarios might be overlooked, since such test cases
may seem too extreme to be encountered while the software
is in use in real life settings. For instance, ERP developers
prepared negative test cases where 100-line long bills were
generated by the software module. However, problems were
later encountered in the field (i.e., in the form of post-release
defects), when a client of the ERP company attempted to
generate 10000-line long bills. ERP project manager indicated
that in order to minimize such incidents, developers take into
account such experiences in the past while generating negative
test scenarios for the next release of the software. Based on

TABLE V. SUMMARY STATISTICS FOR THE Indelim/enum METRIC

Project (Dataset) Metric Mean[0,1] Mean Median Max

Telecom1 Indelim/enum 0.23 0.39 0.25 1.68
Telecom2 Indelim/enum 0.55 1.71 1.72 3.09
ERP Indelim/enum 0.47 0.93 0.94 2.00

the outcomes of positive and negative tests, addition of new
features or refactoring might be required. However, such mod-
ifications might not be feasible at the time, since modifications
may lead to failures in other parts of the software.

A. Metric 1: Eliminative/Enumerative Index (Indelim/enum)

1) Definition: Indelim/enum metric is extracted from the
interactive part of the confirmation bias test. This metric is
used to estimate the proportion of the total number of instances
that are incompatible with reasons the participant writes down
during the interactive test to those that are compatible.

2) Theoretical Basis: The eliminative/enumerative index
(Indelim/enum) was introduced by Wason to evaluate the
results of his rule discovery task [19], which forms the basis
of the interactive part of confirmation bias test. In his rule dis-
covery task, Wason concluded that participants who announced
the correct rule on the first try had higher Indelim/enum values
compared to the rest of the participants.

If the value of Indelim/enum is lower than 1, this implies
that participants are more inclined to use triples of numbers
(i.e., test cases) that are compatible with their hypotheses.
As it was previously indicated by Teasley et al., there is a
similarity between software testing and Wason’s rule discovery
task [21]. Developers with Indelim/enum values lower than 1
are more likely to be inclined to select positive test cases to
verify their code. This, in turn, leads to an increase in software
defect density. On the other hand, effective unit testing can be
achieved only by employing negative test scenarios in addition
to positive tests.

3) Empirical Data: Percentage distribution of developer
groups with respect to IndElimEnum metric values and sum-
mary statistics are shown in Figure 1 and Table V for all three
projects Telecom1, Telecom2 and ERP.

4) Interpretation of Data: As shown in Figure 1, 41.86% of
the developer groups in project Telecom1 have Indelim/enum

value that is in the range [0, 0.1] (i.e., IndElim/Enum ≥ 0
and IndElim/Enum ≤ 0.1). Moreover, the values of the elim-
inative/enumerative index is less than 0.5 for 79.07% of the
Telecom1 developer groups. Distributions of the Indelim/enum

values among developer groups for the projects Telecom2 and
ERP exhibit a tendency towards a more eliminative behavior.
The difference among the distributions for all three projects
is statistically significant (χ2(2, N = 77) = 17.4, p =
1E − 6). The value of the Indelim/enum metric for 71.43%
and 61.54% of the developer groups belonging to projects
Telecom2 and ERP, respectively is in the range [0.5, 1] (i.e.,
IndElim/Enum > 0.5 and IndElim/Enum ≤ 1).

B. Metric 2: Total Number of Positive and Compatible In-
stances (InstCompatible)

1) Definition: InstCompatible metric value is also extracted
from the interactive part of the confirmation bias test. This

367367

Fig. 1. Percentage distribution of developer groups for the IndElimEnum

metric

Fig. 2. Percentage distribution of developer groups for the InstCompatible

metric

metric gives the total number of compatible instances given by
a participant after (s)he makes an incorrect rule announcement.

2) Theoretical Basis: Giving rules that conform to one
or more of the previously announced incorrect rules is an
indication of the participant’s lack of tendency to refute the hy-
potheses in his/her mind even though (s)he has been informed
about the incorrectness of these hypotheses (i.e., previously
announced rules). In his rule discovery task experiment, Wason
also observed that subjects, who failed to find the correct rule
on the first announcement, gave examples of triples that are
compatible with the rules, which they previously announced
[19].

3) Empirical Data: Percentage distribution of developer
groups with respect to InstCompatible metric values and sum-
mary statistics are shown in Figure 2 and Table VI for all three
projects Telecom1, Telecom2 and ERP.

4) Interpretation of Data: As it can be seen from the per-
centage distribution of developer groups for the InstCompatible

metric in Figure 2, compatible instances are rarely announced
by developers that belong to the projects Telecom2 and ERP.
There is a statistically significant difference among he three
distributions (χ2(2, N = 77) = 18.1, p = 1E − 6). The
InstCompatible metric values for the 71.43% and 92.31% of
developer groups belonging to the projects Telecom2 and ERP
are in the range [0, 0.1]. On the other hand, only 2.33% of the
developer groups that belong to the project Telecom1 have
InstCompatible metric values that are in the range [0, 0.1].

TABLE VI. SUMMARY STATISTICS FOR THE InstCompatible METRIC

Project (Dataset) Metric Mean[0,1] Mean Median Max

Telecom1 InstCompatible 0.40 1.60 1.50 4.00
Telecom2 InstCompatible 0.18 0.18 0.00 1.00
ERP InstCompatible 0.08 0.08 0.00 1.00

TABLE VII. SUMMARY STATISTICS FOR THE Rules/T ime METRIC

Project (Dataset) Metric Mean[0,1] Mean Median Max

Telecom1 Rules/T ime 0.78 0.20 0.20 0.25
Telecom2 Rules/T ime 0.30 0.20 0.13 0.67
ERP Rules/T ime 0.60 0.30 0.28 0.50

C. Metric 3: Total Number of Rules Announced per Unit Time
(Rules/T ime)

1) Definition: The metric Rules/T ime measures the Total
number of rules announced per unit time during the interactive
part of the confirmation bias test. Rules/T ime is estimated
by dividing the total number of rules announced by the
participant (i.e., Na) to the total time (in minutes) it takes
to complete/terminate the interactive part of the confirmation
bias test.

2) Theoretical Basis: In his rule discovery task, Wason
used a metric Na measure the total number of rules announced
by a participant throughout the whole experiment. As one of
the outcomes of his rule discovery task, Wason presented a
frequency distribution of participants with respect to the total
number of rule announcements made [19]. In our research, we
introduce the metric Rules/T ime by also taking “time” into
consideration. A developer having a high Rules/T ime value
(i.e., a developer who announces high number of rules in a
short period of time) as the outcome of the interactive question
has the tendency to deliver his/her code to the testing phase
without making adequate unit testing. For such a developer, the
compilation of his/her code is sufficient. In other words, high
Rules/T ime is an indication of the developers rush to solve
the interactive question correctly, mostly without checking the
possibility of the alternative hypotheses in his/her mind by
giving instances.

3) Empirical Data: Percentage distribution of developer
groups with respect to Rules/T ime metric values and sum-
mary statistics are shown in Figure 3 and Table VII for all
three projects Telecom1, Telecom2 and ERP.

4) Interpretation of Data: There is a statistically significant
difference among the distributions of developer groups with
respect to the Rules/T ime metric values for the three projects
Telecom1, Telecom2 and ERP (χ2(2, N = 77) = 26.7, p =
1E − 6). The Rules/T ime metric values for the 86.05% of
the developer groups belonging to the project Telecom1 are in
the range [0.5, 1]. On the other hand, the metric values for the
76.19% and 53.85% of the developer groups, which belong
to the project groups Telecom2 and ERP, respectively are less
than 0.5.

D. Metric 4: Partial Insight in Abstract Questions
(AbsPartialInsight)

1) Definition: The metric AbsPartialInsight measures the
extent of having both verifying and falsifying tendencies
during the written part of the confirmation bias test.

368368

Fig. 3. Percentage distribution of developer groups for the Rules/T ime
metric

2) Theoretical Basis: In their information processing
model, Johnson-Laird and Wason [28] classified the partici-
pants performance on Wason’s selection task as no insight,
partial insight and complete insight based on the kinds of
systematic errors made by the participants. In their studies,
Mataraso-Roth [29] and Evans and Lynch [30] discovered that
participants performing at the level of no insight focus on cards
mentioned in the rule whose validity is tested. The selection of
cards by a participant with no insight might be due to the par-
ticipants tendency to verify the rule, or (s)he might just match
the symbols or words on the cards with those mentioned in the
rule. On the other hand, participants performing at the level
of partial insight or complete insight consider what symbols
or words occur on the back of each card, such participants
perform a systematic combinatorial analysis of the cards. The
difference between these two performance levels is that the
participants having partial insight select all cards that could
either verify or falsify the rule, whereas the participants with
complete insight select only the cards that have the potential
to falsify the rule. Depending on whether the selection task in
the written question set is abstract, or thematic, performance
of a participant may vary [27]. Participants usually perform
poorly on abstract questions [27], [28], since logical reasoning
skills are required to solve abstract questions correctly, while
in thematic questions memory cueing and real life experi-
ence can be helpful while answering those type of questions
[27]. As a result of our analyses, partial insight regarding
abstract questions turned out to be the most discriminative
measure. Therefore, our metric set only included the metric
AbsPartialInsight.

3) Empirical Data: Percentage distribution of developer
groups with respect to AbsPartialInsight metric values and
summary statistics are shown in Figure 4 and Table VIII for
all three projects Telecom1, Telecom2 and ERP.

4) Interpretation of Data: As it is shown in Figure 4,
the difference in the percentage distribution of the developer
groups with respect to the AbsPartialInsight metric values for
all three projects (i.e.,Telecom1, Telecom2 and ERP) is statis-
tically significant (χ2(2, N = 77) = 29.3, p = 1E − 6). The
results obtained are inline with the results that we obtained in
our previous study. Developer groups belonging to the projects
Telecom2 and ERP performed better than the developer groups
belonging to the project Telecom1 in terms of the metric
AbsPartialInsight. The values for the metric AbsPartialInsight

are in the range [0, 0.1] for the 52.38% of the developer groups

Fig. 4. Percentage distribution of developer groups for the
AbsPartialInsight metric

TABLE VIII. SUMMARY STATISTICS FOR THE AbsPartialInsight

METRIC

Project (Dataset) Metric Mean[0,1] Mean Median Max

Telecom1 AbsPartialInsight 0.77 0.77 0.75 1.00
Telecom2 AbsPartialInsight 0.25 0.25 0.00 1.00
ERP AbsPartialInsight 0.45 0.45 0.50 1.00

belonging to the project Telecom2. Moreover, the values of this
metric are in the range [0, 0.5] for 80.94% and 61.55% of the
developer groups, which belong to the projects Telecom2 and
ERP, respectively. On the other hand, the metric values are in
the range [0.5, 1] for the developer groups, which belong to
the project team Telecom1.

E. Metric 5: Score in Thematic Questions (STh)

1) Definition: STh measures the portion of the correctly
answered thematic questions in the written part of the confir-
mation bias test.

2) Theoretical Basis: A participant who has a high STh

metric value makes use of the thematic facilitation effects,
such as daily life experience or memory queuing in addition to
his/her logical reasoning skills. During unit testing, it is likely
that In addition to his/her logical reasoning skills, a developer’s
expertise about software development will facilitate his/her
unit testing activities.

3) Empirical Data: Percentage distribution of developer
groups with respect to STh metric values and summary statis-
tics are shown in Figure 5 and Table IX for all three projects
Telecom1, Telecom2 and ERP.

4) Interpretation of Data: As it is shown in Figure 5,
developer groups that belong to projects Telecom2 and ERP
performed better in the thematic part of the written test
compared to Telecom1 developer groups. STh metric values
for the 42.68% of the Telecom2 developer groups are in the
range [0.6, 0.7], whereas the metric values for the 69.23%
of the developer groups of the project ERP are in the range
[0.9, 1.0]. On the other hand, the peak values of the metric
STh for the project Telecom1 are at the ranges [0.4, 0.5]
and [0.6, 0.7], each corresponding to 23.26% of all developer
groups belonging to that project. Moreover, the [0.5, 1] value
range of the STh metric corresponds to the 81.40%, 66.67%
and 92.30% of the developer groups, which belong to the
projects Telecom1, Telecom2 and ERP, respectively. However,
the differences among the distributions for the developer

369369

Fig. 5. Percentage distribution of developer groups for the STh metric

TABLE IX. SUMMARY STATISTICS FOR THE STh METRIC

Project (Dataset) Metric Mean[0,1] Mean Median Max

Telecom1 STh 0.59 0.59 0.57 1.00
Telecom2 STh 0.67 0.67 0.71 1.00
ERP STh 0.92 0.92 0.96 1.00

groups of Telecom1, Telecom2 and ERP projects did not turn
out to be statistically significant at the 0.05 significance level
(χ2(2, N = 77) = 5.21, p = 0.074).

F. Metric 6: Length of Immediate Rule Announcement
(avgLIR)

1) Definition: avgLIR is the average length of the im-
mediate rule announcements made by a participant during
the interactive part of the confirmation bias test. Immediate
rule announcements are made consecutively one after another
without giving instance(s) in between any two consecutively
announced rules. If a participant fails to discover the correct
rule after announcing consecutive rules, according to the
testing protocol (s)he may start over the whole procedure,
which may also end up with a series of consecutively an-
nounced rules. This procedure may go on iteratively until the
participant announces the correct rule or the interactive session
is terminated. Therefore, administration of the interactive test
may result in one or more series of consecutively announced
rules. avgLIR estimates the average number of consecutively
announced rules in all these series.

2) Theoretical Basis: Immediate rule announcements are
an indication of a participants inadequate hypotheses testing
strategies. As a result of such announcements, participants
cannot come up with a single rule at the end by eliminating
alternative hypotheses in their minds. A developer who makes
immediate rule announcements during the interactive part of
the test, is likely to exhibit poor unit testing performance. For
instance, during functional unit testing equivalence partitioning
technique may be referred by the developer. Equivalence parti-
tioning is a non-exhaustive functional testing technique that is
applied to each functional unit mostly together with boundary
testing. In equivalence partitioning, a set of dimensions of
input data are identified for each functional unit, and a set
of equivalence classes are identified for each dimension. A
developer who makes immediate rule announcements when
solving the interactive question is very likely to fail to identify
all dimensions of input data to be tested in the functional
unit testing. Moreover, (s)he will probably fail to properly
determine equivalence classes for each dimension.

Fig. 6. Percentage distribution of developer groups for the avgLIR metric

TABLE X. SUMMARY STATISTICS FOR THE avgLIR METRIC

Project (Dataset) Metric Mean[0,1] Mean Median Max

Telecom1 avgLIR 0.40 0.40 0.40 1.00
Telecom2 avgLIR 0.47 0.47 0.00 1.00
ERP avgLIR 0.76 0.76 0.25 1.00

3) Empirical Data: Percentage distribution of developer
groups with respect to STh metric values and summary statis-
tics are shown in Figure 6 and Table X for all three projects
Telecom1, Telecom2 and ERP.

4) Interpretation of Data: Majority of the Telecom2 and
ERP developer groups made seldom consecutive rule an-
nouncements during the interactive part of the test. The values
of the metric avgLIR are in the range [0, 0.1] for 58% and
85.71% of Telecom2 and ERP developer groups, respectively.
On the other hand, avgLIR metric values are in the range
[0, 0.1] only for 23.35% of Telecom1 developer groups. There
is a statistically significant difference among the percentage
distribution of developer groups with respect to avgLIR metric
values for Telecom1, Telecom2 and ERP developer groups
(χ2(2, N = 77) = 13.7, p = 0.001).

G. Discussions

Values of IndElim/Enum and STh metrics for Telecom1
developer groups are in general lower than those of Tele-
com2 and ERP developer groups. As mentioned previously,
low IndElim/Enum and STh metrics values are among the
indications of high confirmation bias. Moreover, high val-
ues for the InstCompatible, Rules/T ime, AbsPartialInsight

and avgLIR metrics were observed for Telecom1 devel-
oper groups. High values of the metrics InstCompatible,
Rules/T ime, AbsPartialInsight and avgLIR are among the
indications of high confirmation bias. When we shared our
findings with developers and the manager of Telecom1 project,
they stated that one rationale behind high amount of post-
release defects in their software product is their confirmatory
behaviour during testing activities.

V. PRACTICAL IMPLICATIONS

In our previous studies, we defined a methodology to
quantify/measure confirmation bias. In this study, we formed
a metric set that can be used by software practitioners to
improve their software management process and hence quality
of the software product. Based on our findings, we make the
following recommendations to software practitioners:

370370

A. Foreseeing a Major Project Crisis:

The metrics in the proposed metric suite can be used to
foresee a crisis regarding quality of the software product so
that required precautions can be taken on time. For instance,
Telecom1 project group is currently having crisis with its
customers due to high amount of post-release defects. During
the interviews, Telecom1 project group developers and the
project manager stated that the problems are due to inad-
equate testing strategies and the origins of the problem go
back to 2-3 years. We administered confirmation bias tests
to Telecom1 developers in January 2010. During the period
2010-2011, we administered confirmation bias tests to more
project groups. During the analysis of the test outcomes, we
observed that confirmation bias levels of Telecom1 developers
were significantly, higher compared to developers of other
project groups [15], [16], [17], [18]. We shared our analysis
results with developers and the project manager. Developers
and manager of project group Telecom 1 indicated that if
necessary precautions had been taken earlier based on our
findings, they would not be currently dealing with a software
crisis.

B. Implementation and Rework

Project managers should take into account confirmation
bias metrics values besides other factors in order to decide
which developer(s) should fix bugs in the most critical parts of
the software. Moreover, project managers can use confirmation
bias metrics values to prevent contribution of developers hav-
ing high confirmation biases (i.e., confirmation boas metrics
values that are close to worst-case values that are given in Table
III) to same set of files that are supposed to be created for the
upcoming releases. Information about defect rates introduced
by some developer groups during previous releases gives
clues about the future performance of such developer groups.
However, new members may have been included to the project
team and/or some combinations of existing developers may
have contributed to same set of files during previous releases
(i.e., such developer groups may not have been encountered
during previous releases). In such cases, confirmation bias
metrics values can guide project managers to decide whether a
group of developers should contribute to the same set of files
or not.

C. Forming a Balanced Project Organization

It would not be wise to expect any organization to be
created solely with members of low confirmation bias levels
(i.e., members with confirmation bias metrics values that are
close to the corresponding ideal metric values). It also applies
to project teams as dynamic subgroups of the organization
under consideration. The project teams (i.e., subgroups) should
be balanced with respect to confirmation bias level. Using these
metrics as one of the inputs for recruitment is also another
option.

VI. THREATS TO VALIDITY

In order to avoid mono-method bias that is one of the
threats to construct validity, we used more than a single version
of a confirmation bias measure. In this current study, we
defined metric set to be used by practitioners. To form our

confirmation bias metric set, we conducted an extensive survey
of the cognitive psychology literature [19], [20], [27], [28],
[29].

Another threat to construct validity is the interaction of
different treatments. Before the administration of confirmation
bias tests to participant groups, we ensured that none of
the participants were simultaneously involved in several other
experiments designed to have similar effects.

Evaluation apprehension is a social threat to construct
validity. Many people are anxious about being evaluated.
Participants may perform poorly as a result of feeling psycho-
logically pressured. In order to avoid such problems, before
the tests we informed the participants that the questions they
are about to solve do not aim to measure IQ or any related
capability. Participants were also told that the results would
not be used in their performance evaluations and their identity
would be kept anonymous. Moreover, participants were told
that there was no time constraint for completing the questions.

Another social threat to construct validity is the expectan-
cies of the researcher. Since, there are many ways a researcher
may bias the results of a study. Hence, the outcomes of both
written and interactive parts of the test were independently
evaluated by two researchers, one of whom was not actively
involved in the study. The said researcher was given a tutorial
about how to evaluate the confirmation bias metrics from
the outcomes of the written question set and the interactive
question. However, in order not to induce a bias, she was not
told about what the desired answers to the questions were. The
inter-rater reliability was found to be high for the evaluation of
each confirmation bias metric. The average value for Cohen’s
kappa was 0.89.

In order to avoid internal threats to validity, we set the
test dates for all project groups for a time when the workload
of the developers was not intense. No event took place in
between the confirmation bias tests that could have influenced
the performance of the subjects in any of the groups. For
internal validity, we also interviewed with the developers and
project managers in order to interpret our empirical results and
used the information we obtained through interviews in order
to cross-validate the obtained empirical results.

To avoid external threats to validity, we collected data from
two different companies specialized in two different software
development domains. We also selected two different projects
within one of these companies.

For statistical validity, we used Chi Square test while
interpreting the results of our empirical study.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a confirmation bias metric set
to guide practitioners while making decisions about software
development activities. Although, “confirmation bias” is only
a single human aspect, the results we have obtained so far are
quite promising [27]. Therefore, we strongly recommend that
people’s thought processes and other cognitive aspects should
be further investigated within the context of software engineer-
ing. Existing software metrics deal with the measurement of
the software product and process by which it is developed.
We believe that people metrics that focus on human thought

371371

processes, problem solving skills and other cognitive aspects
need to be defined.

As future work, we intend to extend our dataset to include
200 more software engineers from SMEs and large scale
companies in Canada and Turkey. We also would like to refine
our tests to decrease the time and effort required to solve the
tests so that they can also be used by practitioners besides
serving research-related purposes.

In Section II-A, we mentioned the theoretical link between
confirmation bias and defect rates through testing activities.
As a result of our previous research, we found a correlation
between developers’ confirmation biases and defect rates. In
this study, besides empirical analyses, we also conducted
interviews with developers and project managers in order to
find out about actual unit testing performed, the employed
testing strategies and how much testing is done by developers.
As future work, we aim to conduct observational studies and
think aloud protocols in order to further investigate developers’
testing behavior.

In the long run, our previous and current research may
lead to the design of a training and monitoring program which
aims to lower confirmation biases of developers. In cognitive
psychology literature, there are de-biasing strategies that are
based on recent results in meta-cognition research. Meta-
cognitive skills can be taught, however they are not necessarily
transferred from one context to another [31]. Therefore, cogni-
tive psychologists and computer scientists must collaborate to
design context-specific materials for the training of software
professionals. Such a training program can be combined with
project performance monitoring in order to be conducted to
target groups. In addition to monitoring project performance,
improvement in developers, confirmation bias levels can be
monitored by using the metrics in our proposed metric scheme.

ACKNOWLEDGMENT

The authors would like to thank Turkcell A. S. and Ayhan
Inal from Logo Business Solutions for their support in sharing
data.

REFERENCES

[1] E. E. Mills, Software metrics, SEI curriculum Module SEI-CM-12-1.1
Carnegie Mellon University, Software Engineering Institute, 1988.

[2] M. Halstead, Elements of software science, New York: Elsevier, 1977

[3] T. McCabe, A Complexity measure, IEEE Transactions on Software
Engineering, vol. 2, pp. 308-320, 1976.

[4] T. McCabe, Measuring application development productivity, Proceed-
ings of the Joint SHARE, GUIDE, and IBM Application Development
Symposium, October 1417, IBM Corporation, pp. 83-92, 1979.

[5] E. Weyuker, Evaluating software momplexity measures, IEEE Trans-
actions on Software Engineering, vol. 14, pp. 1357-1365, 1988.

[6] S. R. Chidamber and C. F. Kemerer, A metrics suite for object oriented
design, IEEE Transactions on Software Engineering, (20)6, pp. 476–
493, 1994.

[7] N. Nagappan and T. Ball, Using software dependencies and churn
metrics to predict field failures: An empirical case study, Proceedings
of the 1st International Symposium on Empirical Software Engineering
and Measurement, pp. 364–373, 2007.

[8] N. Nagappan, B. Murphy and V. R. Basili, The influence of organiza-
tional structure on software quality: An empirical case study, Proceed-
ings of the 30th International Conference on Software Engineering, pp.
421–530, 2008.

[9] E. J. Weyuker, T. J. Ostrand and , R. M. Bell, Do too many cooks spoil
the broth? Using the number of developers to enhance defect prediction
models, Journal of Empirical Software Engineering, vol. 13, pp. 539-
559, 2008.

[10] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, Predicting fault
incidence using software change history, IEEE Transactions on
Software Engineering, (26)7, pp, 653–661, 2000.

[11] A. Mockus and D. M. Weiss, Predicting risk of software changes, 5,
Bell Labs Technical Journal, pp. 169–180, 2000.

[12] E. J. Weyuker, T. J. Ostrand and , R. M. Bell, Using developer
information as a factor for fault prediction, Proceedings of the 1st
International Workshop on Predictor Models in Software Engineering,
vol. 13, pp. 539-559, 2008.

[13] A. Meneely, L. Williams, W. Snipes, and , J. Osborne, Predicting
failures with developer networks and social network analysis, Pro-
ceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, pp. 13-23, 2008.

[14] N. Bettenburg, Mining development depositories to study the impact
of collaboration on software systems, Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 376-379, 2011.

[15] G. Calikli, A. Bener and , B. Aslan, An analysis of the effects of
company culture, education and experience on confirmation bias levels of
software developers and testers, Proceedings of the 32nd International
Conference on Software Engineering, 2010.

[16] G. Calikli, B. Aslan, and A. Bener, Confirmation bias in software
development and testing: An analysis of the effects of company size,
experience and reasoning skills, Proceedings of the 22nd Annual
Psychology of Programming Interest Group Workshop, 2010.

[17] G. Calikli and A. Bener, Empirical analyses factors affecting confirma-
tion bias and the effects of confirmation bias on software developer/tester
performance, Proceedings of the 5th International Workshop on
Predictor Models in Software Engineering, 2010.

[18] G. Calikli and A. Bener, Influence of Confirmation Biases of Developers
on Software Quality: An Empirical Study, Software Quality Journal,
(21)2, pp. 377–416, 2013.

[19] P. C. Wason, On the failure to eliminate hypotheses in a conceptual
task, Quarterly Journal of Experimental Psychology, vol. 12, pp. 129–
140, 1960.

[20] P. C. Wason, Reasoning about a rule, Quarterly Journal of
Experimental Psychology, vol. 20, pp. 273–281, 1968.

[21] B. F. Teasley, L. . Leventhal, L. M. Mynatt, and D. S. Rohlman, Why
software testing is sometimes ineffective: Two applied studies of positive
test strategy, Journal of Applied Psychology, 79(1), pp. 142–155, 1994.

[22] W. Stacy and J. MacMillan, Cognitive bias in software engineering,
Communications of the ACM, , 38(6), pp. 57–63, 1995.

[23] M. J. Allen and W. M. Yen, Introduction to measurement theory, Long
Groove, IL, USA: Waveland Press Inc., 1979.

[24] C. L. Allen, Principles of behavior, New York, USA: Appleton-
Century-Crofts , 1943.

[25] L. L. Thurstone, Primary mental abilities, Chicago, USA: University
of Chicago Press , 1938.

[26] R. M. Warner, Applied statistics: From bivariate through multivariate
techniques, 2nd Ed., USA: Sage Publications, 2013.

[27] J. St. B. T. Evans, S. E. Newsted and R. M. Byrne, Human reasoning:
the psychology of deduction, East Sussex, UK: Lawrence Erlbaum
Associates Ltd., 1993.

[28] P. N. Johnson and P. C. Wason, A theoretical analysis of insight into
a reasoning task, Cognitive Psychology, vol. 1, pp. 134-148, 1970.

[29] E. Mataraso-Roth, Facilitating insight in a reasoning task, British
Journal of Psychology, vol. 70, pp. 265-271, 1979.

[30] J. St. B. T. Evans and J. S. Lynch, Matching bias in the selection task,
British Journal of Psychology, vol. 64, pp. 391–397, 1973.

[31] C. Mair and M. Shepperd, Human judgment and software metrics:
Vision for the future, Proceedings of the 2nd International Workshop
on Emerging Trends in Software Metrics, pp. 81–84, 2011.

372372

