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Abstract 
During all levels of software testing, the goal should be to fail the code to discover software defects 
and hence to increase software quality. However, software developers and testers are more likely to 
choose positive tests rather than negative ones. This is due to the phenomenon called confirmation 
bias which is defined as the tendency to verify one’s own hypotheses rather than trying to refute them. 
In this work, we aimed at identifying the factors that may affect confirmation bias levels of software 
developers and testers. We have investigated the effects of company size, experience and reasoning 
skills on bias levels. We prepared pen-and-paper and interactive tests based on two tasks from 
cognitive psychology literature. During pen-and-paper test, subjects had to test given hypotheses, 
whereas interactive test required both hypotheses generation and testing. These tests were conducted 
on employees of one large scale telecommunications company, three small and medium scale 
software companies and graduate computer engineering students resulting in a total of eighty-eight 
subjects. Results showed regardless of experience and company size, abilities such as logical 
reasoning and strategic hypotheses testing are differentiating factors in low confirmation bias levels. 
Therefore, education and/or training programs that emphasize mathematical reasoning techniques are 
useful towards production of high quality software.  Moreover, in order to investigate the relationship 
between code defect density and confirmation bias of software developers, we performed an analysis 
among developers  who are involved with a software project in a large scale telecommunications 
company.  We also analyzed the effect of confirmation bias during software testing phase. Our results 
showed that there is a direct correlation between confirmation bias and defect proneness of the code. 

1. Introduction 
Human aspects are one of the basic components of software development and testing. Cognitive 
biases belong to these aspects and they are defined as the deviation of the human mind from the laws 
of logic and accuracy (Stacy & MacMillan, 1993). The notion of cognitive biases was first introduced 
by Tversky and Kahneman (1971) and further elaborated to comprise various bias categories 
(Kahneman, Slovic, & Tversky, 1982).  Availability, anchoring and representativeness are examples 
of cognitive biases. 

As far as we know, Stacy and MacMillan (1993) are the two pioneers who recognized the possible 
effects of cognitive biases on software engineering. In this study, we have investigated the 
confirmation bias, which is defined as the tendency of people to seek for evidence that could verify 
their hypotheses rather than refuting them. The term confirmation bias was first used by P.C. Wason 
in his rule discovery experiment (Wason, 1960).  

The importance of confirmation bias in software engineering comes from the fact that, most of the 
defects are overlooked unless the goal is to fail the code during all levels of software testing. In other 
words, high confirmation bias levels of software developers and testers lead to an increase in software 



   

 

defect density which in turn results in a decrease in software quality.  Empirical evidence shows that 
testers are more likely to choose positive tests rather than the negative ones (Teasley, Leventhal, & 
Rohlman, 1993). However, during all levels of software testing the attempt should be to fail the code. 
This study is concentrated on factors affecting confirmation bias, since circumvention of the effects of 
confirmation bias requires that we know about these factors.  In this study, we also perform a small 
scale empirical analysis about the effects of confirmation bias on software development and testing.  

We propose a method based on Wason’s work to quantify confirmation bias levels. Quantification of 
confirmation bias helps us to analyze the effect of confirmation bias on software defect density as 
well as analyzing potential factors that may affect confirmation bias. In the following section, we will 
give more detailed information about confirmation bias. Then we will explain our methodology in 
detail. Finally, results will be presented, discussed together with threats to validity and potential future 
directions will be given. 

2. Confirmation Bias 
The term confirmation bias was first used by Peter C. Wason in his rule discovery experiment, where 
the subject must try to refute his/her hypotheses to arrive at a correct solution (Wason, 1960). Wason 
also explained the results of his selection task experiment using facts based on confirmation bias 
(Wason, 1968). This section explains these two experiments. 

2.1. Wason’s Rule Discovery Task 

In this experiment, Wason asked his subjects to discover a simple rule about triples of numbers. The 
experimental procedure can be explained as follows: Initially, subjects are given a record sheet on 
which the triple "2 4 6" is written. The subject is told that "2 4 6" conforms to a simple rule which is 
only known by the experimenter at the beginning of the experiment. In order to discover the rule, the 
experimenter asks the subject to write down triples together with the reasons of his/her choice on the 
record sheet. After each instance, the experimenter tells whether the instance conforms to the rule or 
not. The subject can announce the rule only when he/she is highly confident. If the subject cannot 
discover the rule, he/she can continue giving instances together with reasons for his/her choice. This 
procedure continues iteratively until either the subject discovers the rule or he/she wishes to give up. 
If the subject cannot discover the rule in 45 minutes, the experimenter aborts the test. 

2.2. Wason’s Selection Task 

In Wason’s original task, the subject is presented with four cards, which have a letter on one side and 
a number on the other. These cards are placed on a table showing D, K, 3 and 7 respectively. The 
subject is then given the hypothesis  “If a card has a D on one side, then it has a 3 on the other side” 
and he/she is asked  which card(s) he/she should  turn over  to test whether the given hypothesis is 
true or false regarding the four cards presented to him/her. The hypothesis can be considered as a “If 
P, then Q” sentence. The correct way to test this hypothesis would be to select the P and not Q cards, 
which corresponds to selecting D and 7 respectively.  

3. Methodology 
Our methodology aims to quantify confirmation bias levels in order to make empirical analyses to 
investigate the factors affecting confirmation bias.   

3.1. Preparation of the Tests 

Pen-and-Paper Test.  We prepared the pen-and-paper test based on Wason’s Selection Task (Wason, 
1968). Our test consisted of two parts including twenty-two questions of three different types. There 
were eight abstract, six thematic questions in the first part, whereas the second part contained eight 
questions about software domain.  

Abstract questions where subject is asked to check the validity of hypothesis of the form “If P then 
Q”, can be answered correctly by pure logical reasoning. However, a subject might select the cards D 



   

 

and 3, when he/she is asked to check the validity of the hypothesis “If a card has a D on one side, 
then it has a 3 on the other side.”  Regarding the four cards presented to him/her. Such behavior of the 
subject can be explained by one of the following reasons: 

1. Verifying: Subject’s aim might be to verify the given hypothesis. 

2. Matching: Subject might select the cards just by matching the letter D and number 3. In other 
words, any reasoning strategy is not employed by the subject. This phenomenon, which was 
first defined by Evans (1972), is called matching bias. 

One of the abstract questions was the question proposed by Wason in his selection task. Table 1 
shows all versions of the original question with their possible answers categorized as true/false 
antecedent and true/false consequent. In order to analyze response strategies of subjects to these 
questions, all three negated versions of this original question were included in the test. Three of the 
remaining abstract questions had slight variations from the original Wason’s Selection Task question.  
 

Table 1 – The four logical choices in Wason's selection task with negated components permuted, 
TA: True Antecedent, FA: False Antecedent, TC: True Consequent, FC: False Consequent 

 

Each thematic question in the test represented a probable real-life situation, so that they could be 
answered correctly using the cues produced by memory. Finally, domain-specific questions required 
participants to analyze a software problem which is independent of programming tools and 
environment. 

Interactive Test. This test was a replication of Wason’s Rule Discovery Experiment.  Hence, similar 
to the original experiment, the experimenter performs the test face-to-face with each subject one at a 
time. Prior to the test, the experimenter explains to each subject the experimental procedure and the 
subject is also told that there is no time constraint. 

3.2. Evaluating Pen-and-Paper Test 

Falsifier/Verifier/Matcher Classification. Given the conditional rule of the form if P, then Q, the 
subject who selects P, Q as the answer can either be a verifier or matcher. Similarly, the same answer 
for the rule if P, then not-Q, means that the subject can be a falsifier or a matcher. In order, to 
overcome this fuzziness, we employed the method of Reich and Ruth (1982), which is explained 
below as follows: 

• choice of not-Q in the rule "If P, then Q" = falsifying 

• choice of not-Q in the rule "If P, then not Q" = verifying 

• choice of P in the rule "If not P, then Q" = matching 

• choice of not-Q in the rule "If not-P, then Q" = falsifying 

• choice of P in the rule "If not P, then not Q" = matching 

Rule TA FA TC FC 
(If P, then Q) 

If there is a D on one side, then there is a 3 on the other side D K 3 7 

(If P, then not Q) 
If there is a D on one side, then there is not a 3 on the other side D K 7 3 

(If not P, then Q) 
If there is not a D on one side, then there is a 3 on the other side K D 3 7 

(If not P, then not Q) 
If there is not a D on one side, then there is not a 3 on the other 

side 
K D 7 3 



   

 

• choice of not-Q in the rule "If not P, then not Q" =  verifying 
 

According to the responses given to the four types of an abstract question, the subject was categorized 
as a falsifier, verifier or a matcher. This categorization decision was given according to the majority 
of the response tendencies, i.e. if a subject usually responded in a falsifying strategy, then he/she was 
categorized as a falsifier. There was also the possibility that the subject could not be categorized. This 
categorization neglects a large proportion of data provided by the subjects. On the other hand, it gives 
a general view about the subjects’ responses. For these reasons, we used this method and labelled 
subjects, whom we could not classify, as None. 
 

Insights. As an additional measure of the test, we took insights of the subjects into account. Johnson-
Laird and Wason (as cited in Evans, Newstead & Bryne, 1993) proposed that subjects were in one of 
three states of insight as follows: 

 No insight. Subjects attempted to verify and chose p alone or the combination of p and q in 
the original question. 

 Partial insight. Subjects attempted to both verify and falsify the rule and hence chose p, q and 
not-q cards in the original question. 

 Complete insight. Subjects only attempted to falsify the rule and chose p and not-q cards in 
the original question. 

Since we had more than one question in the test, we devised a method to classify the subjects 
according to this concept. Subjects who answered all of the abstract questions correctly were 
classified to have complete insight. Those who chose true antecedent alone or the combination of true 
antecedent and true consequent in more than or equal to half of  the abstract questions were classified 
as having no insight. Finally, subjects who chose the combination of true antecedent, true consequent 
and false consequent in more than or equal to the half of the questions were classified as having 
partial insight. 

3.3 Evaluating Interactive Test 

Eliminative/Enumerative Index. This index aims to give an idea about how a subject thinks while 
he/she is going forward in the interactive test. A subject may think more eliminative and test more 
hypotheses or may think more enumerative and test similar hypotheses with different instances. The 
calculation of this index takes into account the nature of the instances in relation to their reasons for 
choice. The index is calculated as a ratio of the number of subsequent instances incompatible with 
each reason of choice to the number of compatible instances, summed over all proposed reasons. It is 
desirable to have this index to be greater than 1. Wason indicates that when this value is greater than 1 
(the higher the better), the less confirmation bias of the subject is. 

Test Severity. Severe testing consists of testing observations that have a high probability of being true 
in focal hypothesis and a low probability under all possible hypotheses (Poletiek, 2001). The severity 
of a test can be thought of as the power to eliminate alternative hypotheses. Poletiek’s rule discovery 
experiment (2001) presented the subjects with the triple “2 7 6” and asked them to discover the rule 
that this triple conformed to. Test severity was calculated for each subject as follows:  

       (1) 

This formula was defined by Popper (Poletiek, 2001), and x represents the severity of a test, H 
represents the hypothesis and b stands for the background knowledge. The severity of a test x is 
interpreted as the supporting evidence of the theory H given the background knowledge b. A test is 
more severe when the chance of the supporting observation occurring under the assumption of the 
hypothesis H exceeds the chance of its occurring without the assumption of the H (i.e. with the 
assumption of the background knowledge b only). The higher this ratio is (exceeds 1), the higher the 
severity of the test is.  



   

 

To carry out a similar calculation, we have defined a set of possible alternative hypotheses of the 
interactive test as shown in Table 2. Instances given by the subjects are categorized as positive or 
negative tests according to their compliance with the experimenter’s rule. Then, a positive test is more 
severe if it excludes more alternative hypotheses shown in Table 2 and a negative test is more severe 
if it includes more alternative hypotheses.  For each instance given by the subject, a severity score was 
calculated. Finally, a mean severity score for each subject was calculated over all of his/her instances. 
This mean score could be between 0 and 27, since there were twenty-seven alternatives defined.  

Poletiek (2001) discussed that maximizing the severity of tests may be a successful strategy if the 
subject has enough confidence in his/her hypothesis. Starting with a severe test may not result in more 
knowledge, so that it may be a better strategy to start with a mild test, increasing its severity when 
there is more evidence and then decreasing its severity again when one becomes quite sure about the  

validity of the hypothesis. 

Table 2 – The Set of Plausible Alternative Hypotheses 

4. Experiment 

4.1. Participants 

Participants were employees of four companies and graduate computer engineering students. One of 
the companies was a large scale telecommunications company C1 (11 females, 23 males, mean age = 
29.06 years). There were three other small and medium scale software companies C2 (6 males, mean 

1 Integers ascending with increments of 2 15 Sum of the first and second integer is the 
third integer 

2 Integers ascending with increments of k, 
where k = 1,2, ... 16 The triples of the form (2n 4n 6n), where 

n = 1,2,3, … 

3 
Three integers in ascending order such that 

the average of the first and third integer is the 
second integer. 

17 The triples of the form (n 2n 3n), where 
n = 1,2,3, …  

4 The average of the first and third integer is the 
second integer 18 Second integer is greater than the first 

one 

5 Even integers ascending with increments of 2 19 Third integer is greater than the first 
integer 

6 Integers ascending with increments of m = 2k, 
where k = 1,2,3, … 20 Difference between the third and the first 

integer is even 

7 Integers ascending or descending with 
increments of m = 2k, where k = 1,2,3, … 21 Greatest common divisor (GCD) of the 

integers is 2 

8 Even integers in ascending order 22 Ascending integers such that each 
integer is 1 less than a prime number 

9 Positive even integers in ascending order 23 Any three rational numbers 

10 Three even integers in any order 24 Positive real numbers in increasing order 

11 Three integers in any order, none of them are 
identical 25  Positive integers in increasing order 

12 Three integers in any order, two or three of 
them are identical 26 Three integers whose sum is even 

13 
Three integers in ascending order such that 
difference between third and first number is 

even 
27 Three even integers greater than zero 

14 Integers ascending or descending with 
increments of k, where k = 1, 2, 3, … 



   

 

age = 24 years), C3 (1 female, 7 males, mean age = 29.63 years), and C4 (1 female, 11 males, mean age 
= 27.17 years). In addition, twenty-eight graduate computer engineering students participated in the 
study (7 females, 21 males, mean age = 27.96 years). 

Most of our subjects had a bachelor degree in computer science, mathematics or other engineering 
fields. 

4.2. Procedure 

All participants from companies were tested in their work environment. Students were tested at the 
university. First, it was explained that the tests do not aim at measuring IQ or similar capabilities. It 
has been told that the goal of the tests was identifying how people think. Subjects were asked to fill in 
the form about their personal information. Information about age, gender, B.S. field and university, 
M.S./M.A. field and university (if they exist), software development experience (in years), software 
testing experience (in years) was taken from each participant.  

In each company, pen-and-paper test was applied to the employees as a group after the explanation of 
the test. Later, subjects participated one by one in the interactive test. Durations of both tests were 
recorded.  

5. Results 
In the following subsections, results of the analyses of the effects of company size, experience and 
reasoning skills are presented.  

5.1. Effects of Company Size, Experience and Reasoning Skills on Confirmation Bias 

The Analysis of Company Size. In this part, results of the large scale telecommunication company are 
compared with the results of three small/medium scale software companies in terms of both test 
performances.  

 

 

 

 

 

 

 

 

Figure 1 – The Distribution of Falsifiers, Verifiers and Matchers within Group 1(large scale 
company) and Group 2(small and medium scale companies) 

 

In Figure 1, the percentages of falsifiers, verifiers and matchers for both groups can be seen. The large 
scale company, which is denoted as Group 1 in Figure 1, has a higher percentage of falsifiers, 
verifiers and matchers. Since this distribution alone is not very explanatory due to the high percentage 
of subjects not categorized, we examined another aspect, namely ‘insights’. The distribution of 
insights is shown in the Figure 2. According to Figure 2, the large company had a higher percentage 
of subjects with complete insight, slightly smaller percentage of subjects with partial insight and 
smaller percentage of subjects with no insight. But this difference is not significant statistically. Also, 
no significant difference was observed in the scores of the abstract questions indicating that no 
difference in logical reasoning skills was observed among the two groups. 



   

 

 

 

 

 

 

 

 

 

  
Figure 2 – The Distribution of Subjects according to their Insights within Group 1(large scale 

company) and Group 2(small and medium scale companies) 

 

However, analyzing the interactive tests yielded differences between two groups. After excluding 
outliers from both groups, Mann-Whitney U-test was used to compare the ranks for 
eliminative/enumerative index values. The results of the test were significant, z = -2.76, p < .01. 
Group 1 (n=34) had an average rank of 35.47, while Group 2 (n=26) had an average rank of 23.06. 
This indicated that employees of the large scale company performed better in terms of elimination of 
their hypotheses. 

Another Mann-Whitney U-test was used to compare the ranks for test severity values among Group 1 
and Group 2. The results of the test were significant, z = -2.26, p < .05. Group 1 had an average rank 
of 34.96, while Group 2 had an average rank of 24.67. This indicated that, Group 1 had higher test 
severity values indicating a strategy that employed high severe testing. But, as mentioned before, it is 
a successful strategy to start with a mild test, continue with a more severe test and then end with a 
mild test again. In order to compare these severity strategies among two groups, we have made use of 
Vincent curves (as cited in Hilgard, 1938). These curves can be used to visualize the change in test 
severity of a group of subjects until the discovery of the correct rule. We have used the original 
method proposed as follows:  

A number N was taken to be the bin size and total number of instances given by each subject was 
divided into fractions according to this number. Within each fraction, the average of the test severities 
of instances in that fraction was calculated for each subject. Then, all severity values in each fraction 
were averaged to give the mean severity value of all instances given by subjects in that fraction. As N, 
we have used the smallest number of instances given within the group of subjects. For instance, the 
division of 13 instances into N=4 fractions would be 4, 3, 3, 3. Additional instances that were left over 
from the division were added to the beginning according to the original procedure. Then, in the first 
fraction the average severity value of the four instances that fell in that fraction was calculated. This 
procedure was repeated for all subjects until mean severity values for N bins were obtained. A 
Vincent curve depicts these N data points, and it can be used to interpret the severity strategy 
employed by the subject.  

Figure 3 shows the Vincent curve for the test severities of the three groups of subjects. The bin size 
was taken to be three, equal to the minimum number of instances given by a subject. 

 

 

 

 

 
 



   

 

 

 

 

 

  
 

 

Figure 3 – Vincent Curve showing Test Severity Strategy of three groups, G1 being the group of small 
and medium scale companies, G2 being the large scale company and  

G3 being the group of graduate students 

Examining the curve for the large scale company, denoted as G2 in the figure, shows that testing 
started with a mild test and became more severe and then ended in a milder test. This strategy was 
mentioned to be a successful strategy for hypothesis testing. The curve denoted with G1 in the figure 
shows that the overall strategy of the small and medium scale companies was to begin with a mild test 
and gradually enhance the severity. By comparing these two curves, we can say that the strategy of 
the large scale company shows a more sensible hypothesis testing strategy. 

However, Poletiek (2001) also mentioned that selecting severe rather than weak tests does not 
necessarily reflect a motivation to falsify. In fact, the purpose of such a strategy might be to give a 
strong proof for one’s theory. To investigate that, we have analyzed the percentages of subjects in 
both groups, who have showed strong confirmation tendencies by repeating or reformulating their 
reasons for choice or their rules and who have immediately announced new rules without giving an 
instance, i.e. without testing their hypotheses. We have determined the percentages of these subjects 
within all groups as shown in Table 3. A subject who may have repeated a reason may also have made 
an immediate rule announcement, so that it is not the case that a subject can only be found in one cell 
of Table 3. 

In order to compare these statistics between groups, we have merged the columns of Table 3 and 
compared the number of subjects who behaved in a confirmative way between groups, i.e. subjects 
who engaged in at least one activity defined in the columns. We have found no significant difference 
between the groups of companies according to company size, (χ²(1) = .09,  p > .7). Hence, we can say 
that large scale company engaged in a better hypothesis testing strategy by looking at 
eliminative/enumerative index, test severity values and Vincent curves. 

The Analysis of Experience. We have investigated whether there was a significant correlation between 
software testing experience and test severity. All subjects who had software testing experience were 
included in the test (n=27), and no significant result was obtained. Also, no significant correlation was 
found between software testing experience and eliminative/enumerative index.  

A similar analysis was conducted for software development experience. All subjects who had 
software development experience were included in the test (n=50). No significant correlation was 
found between software development experience and eliminative/enumerative index as well as test 
severity.  

Hence, results showed no effect of software testing or development experience on the ability of 
hypothesis testing.  

Another analysis was conducted to compare test results among subjects taken from graduate students 
and employees of all companies, where the subject selection criterion was having the combination of 
software development and testing experience greater than the average number of years of experience 
found among graduate students. The average experience value was taken from the students’ group to 
make sure that there will be enough subjects from this group in the analysis. 



   

 

Mann-Whitney U-test was used to compare the ranks for test severity, eliminative/enumerative index 
and test durations among employees (n=43) and students (n=13). The only significant result of the 
tests showed that interactive test duration of the student group was lower, z = -1.39, p < .05. First 
group had an average rank of 30.15, while second group had an average rank of 23.04. Hence, we 
concluded that the group of students reached the end of the interactive test more quickly. 

            Table 3 – The Percentages of Subjects within three Groups according to their Confirmation 
Tendencies 

Our hypothesis for these two groups was that they would differ in terms of logical reasoning, and 
hence in their scores of the abstract questions found in pen-and-paper test. This difference was 
confirmed significantly in favor of the graduate students, when the number of subjects below and 
above median score were compared statistically (χ²(1) = 8.114, p < .005). Another interesting result 
was that the student group also performed better in questions with a software theme (χ²(1) = 7.085, p 
< .01). 

Similar analyses were conducted among three more groups. All members who had software 
development and testing experience equal to or more than the average experience were included in the 
analyses. For the sake of simplicity, let us refer to the large scale company as C1, the group of small 
and medium scaled companies as C2 and graduate students as S. We first analyzed whether test results 
differed significantly among C1 and C2. Significant results were obtained with Mann-Whitney U-test 
for test severity, z = -2.48, p < .05 and eliminative/enumerative index, z = -3.82, p < .001. For test 
severity, the mean ranks were 23.36 for C1 and 19.18 for C2. For eliminative/enumerative index, the 
mean ranks were 27.07 for C1 and 11.5 for C2. These results indicated that, employees of the large 
scale company performed better in the interactive test compared to the employees of small and 
medium scaled companies when only subjects with an experience level higher than the average was 
taken into consideration.   

Further analyses were conducted for the student group versus C1 and C2. It has been observed that the 
student group differed significantly from C1 in terms of their scores in abstract questions (χ²(1) = 
6.773, p < .01) and in software-domain questions (χ²(1) = 7.38, p < .01). A similar pattern of results 
was observed for the student group and C2. Again, significant differences were found in the scores of 
the abstract questions (χ²(1) = 6.677, p < .01) and software-domain questions (χ²(1) = 4.34, p < .05). 
These results indicated that it was easier for the student group with the experience level equal to or 
more than the average experience to employ logical reasoning and use it effectively than software 
developers and testers of the companies. 

 The Analysis of Reasoning Skills. When we compared the strategies employed by the subjects in the 
pen-and-paper test, we observed that the percentage of falsifiers was higher in the group of students, 
while the percentage of verifiers and matchers was lower compared to the other group of software 
developers and testers of the four companies. This distribution is shown in Figure 4. The significant 
difference among the falsifiers, verifiers and matchers in both groups was confirmed statistically 
(χ²(2) = 6.922, p < .05). 

 

 

 

 Reason Repetition / 
Reformulation 

Rule Repetition / 
Reformulation 

Immediate Rule 
Announcement 

Small and medium 
scale companies 73% 7.6% 23% 

Large scale company 64.7% 26.4% 32.3% 

Graduate students 57.1% 10.7% 17.8% 



   

 

 

 

 
  
  
 

 

 

Figure 4 – The distribution of subjects according to Reich and Ruth’s method  
among two groups, Group 1 being students and Group 2 being all employees 

 
Since a high percentage of subjects could not be categorized according to this method, as an 
additional measure we have performed an analysis of ‘insights’. Outcomes are shown in Figure 5, 
which seems to confirm the hypothesis that the percentage of people with complete insight is higher 
among students, whereas people with partial or no insight are less frequent in this group. These results 
were also confirmed statistically (χ²(2) = 9.620, p < .01). Hence, we can conclude that students 
performed better in pen-and-paper test when compared to all other subjects. 

Further analyses were conducted to compare interactive test results. This time, S, the group of 
students, was compared to two groups, first being the large scale company C1 and the second being 
the group of small and medium scaled companies C2. 

 

 

 

 

 

 

 

 

 

Figure 5 – The distribution of subjects according to insights  
among two groups, Group 1 being students and Group 2 being all employees 

 
It has been observed that the time to finish the interactive test was significantly lower for S than C1, z 
= -3.57, p < .001 and C2, z = -1.97, p < .05. No significant difference was observed for 
eliminative/enumerative index.  

When we compared test severities with Mann Whitney U-test, we have found a significant difference 
between S and C1, z = -2.46, p < .05. S had an average rank of 24.72, while C1 had an average rank of 
35.99. This could mean that C1 employed a better hypothesis testing strategy or exact the opposite, 
that they had strong confirmations. Looking again at Figure 3, we observed that the group of graduate 
students (G3 in the figure) also performed a desired hypothesis testing strategy starting with a mild 
test, increasing the severity and then again decreasing it. In order to be able to compare these two 
groups, we analyzed whether there was a significant difference between two groups in terms of 
confirmative behavior. In order to accomplish this, we took into account the subjects within groups 



   

 

who engaged in an activity such as repeating or reformulating a reason or a rule; or immediately 
announcing a rule. A significant difference was found between these groups in terms of the number of 
people engaging in a confirmative behavior (χ²(2) = 5.939, p < .05). We concluded that the group of 
graduate students was better at hypothesis testing. This was also supported by the fact that 27 out of 
28 students found the correct rule at the end of the interactive test, whereas 29 out of 34 employees of 
the large scale company was able to find the rule. No significant difference was observed for test 
severity between S and C2. 

In order to observe more possible differences between the group of students and the large scale 
company, results of the pen-and-paper test are compared. Figure 6 shows the distribution of falsifiers, 
verifiers and matchers in both groups. This figure shows that the percentage of falsifiers among 
students is higher and the percentage of verifiers and matchers is lower.  

 

  
  
  
  
  
  
  
  
  
  
  

Figure 6 – The distribution of subjects according to Reich and Ruth’s method  
among two groups, S being students and C1 being employees of the large scale company 

 

It has been found that both groups differed significantly in terms of the percentages of falsifiers and 
verifiers, thus confirming the claim that there is a significant difference in both test performances 
between these groups (χ²(1) = 4.835, p < .05). The high percentage of subjects of the large scale 
company with no insight as shown in Figure 7 also confirms this fact. 
 

 

 

 

 
  
  
 Figure 7 – The 

distribution of subjects according to insights  
among two groups, S being students and C1 being employees of the large scale company 

 

5.2. Effects of Confirmation Bias on Software Defect Density 

 Analysis of the Effect of Confirmation Bias on Software Developer Performance. As a result of the 
lack of tendency to try to fail code during unit tests, a software developer  is likely to introduce 
defects to his/her code. In order to analyze this phenomenon empirically, we analyzed the last ten 
releases of customer services and channel management software developed in the large scale 



   

 

telecommunications company C1. There were 12 developers and 16 testers assigned to this software 
project. However, we could only perform our tests to five developers whose records appear in churn 
data. The rest of the development team were new to the project due to sudden change in the 
organizational structure.  

During our analyses, we took into account only Java source codes, as churn data contained 
information about only Java source files. The files that are created in a release before the release of 
interest R, but just modified within release R are not taken into account. Our analyses include only 
Java source files that are created within each release. The owner of each file is determined from churn 
data and related defect information is obtained from the defect log of the corresponding release. As 
shown in Table 4, developer who gave up the interactive test (Developer1) has the highest defect ratio 
which is the ratio of the number of defected files to the total number of files implemented by that 
developer.  Moreover, it took much longer for Developer1 to solve both parts of the pen-and-pencil 
test compared to the rest of the developers. On the other hand, no significant difference in 
elimination/enumeration index of Developer1 from the indices of the remaining developers was 
observed. 

 
 

Defect 
Ratio 

Eliminative/ 
Enumerative 

Index 

Interactive 
Test Duration 

(minutes) 

Abstract & 
Thematic Test 

Duration 
(minutes) 

Software Test 
Duration 
(minutes) 

Developer1 0.86 0.83 ABORT 20 26 

Developer2 0.38 1.83 12 12 10 

Developer3 0.20 1.82 14 10 10 

Developer4 0.00 0.75 22 9 13 

Developer5 0.11 0.50 8 15 10 

Table 4 – Defect Ratio versus Some Confirmation Bias Results of Developers of a Software Project of 
the Large Scale Telecommunications company (C1). 

 

 
Figure 8- Distribution of falsifiers, verifiers, and matchers among testers who report bugs above and 

below average amount, according to Reich and Ruth’s method. 
 

 Analysis of the Effect of Confirmation Bias on Software Tester Performance. In this part of our work, 
to analyze  the effect of confirmation bias on tester performance,  we inherited two tester performance 
metrics from tester competence reports of the large scale telecommunications company C1. In this 
study we analyzed the testers of the same project group we performed the analyses about developer 
performance. Out of 16 testers, performance related data of 12 testers were in the tester competence 



   

 

reports.  The remaining 4 testers had recently joined the project group due to the sudden change in the 
organizational structure.  These metrics are the number of bugs reported (NBUG) and the number of 
production defects caused (NPROD_DEF) by each tester respectively. We grouped members of C1 based 
on the values of NBUG and NPROD_DEF.  Figure 8 shows that there are no falsifiers among testers who 
detect bugs above average NBUG value. This group of testers also contains more verifiers compared to 
the tester group detecting bugs below average NBUG value . 
 

 
 

Figure 9- High Correlation between production defect and total number of reported bugs (spearman 
rank correlation: 0.8234 ) 

 
Figure 10- Distribution of falsifiers, verifiers, and matchers among testers who cause production 

defects above and below average amount, according to Reich and Ruth’s method. 

 

As shown in Figure 9, high correlation between total number of reported bugs and production defect 
count may indicate another phenomenon, namely, testers who report more bugs might be assigned 
codes with very high defect density requiring immense testing effort. However, for each tester there is 
also a time pressure to end the testing procedure and this may result in the deployment of the defected 
codes. Another explanation for the outcome shown in Figure 9, is that bugs are not classified 
according to their severities. Hence, large number of reported bugs does not necessarily mean that a 
significant portion of severe bugs has been reported. As a result, testers with low confirmation bias 
levels seem to detect more bugs. However they are more likely to overlook most of the defects which 
leads to an increase in production defects. In Figure 10, among testers who introduce production 
defects above average there are no falsifiers and this result is in line with our latter explanation. 

7. Threats to Validity 
In terms of internal validity, our quasi-independent variables are company size, experience and 
reasoning skills. In order to obtain measures for these variables, we performed both interactive and 



   

 

pen-and-paper tests to development and testing team working on a software project in the large scale 
telecommunication company (C1) within a week. Tests were completed among graduate computer 
engineering students (S) also in less than a week; whereas the completion of the tests took 1 day for 
each of the small scale companies (C2). Moreover, within any of the groups there was no event in 
between the confirmation bias tests that can affect subjects’ performance. 
 
However, problem may arise due to different experimental conditions. For instance, compared to 
graduate computer engineering students, stress factor of company workers due to the fact that they 
always have to rush the next release may have biased the results. In order to avoid mono-operation 
bias as a construct validity threat, we used more than a single dependent variable. We used Wason’s 
elimination/enumeration index (Wason 1960), test severity in addition to interactive and pen-and-
pencil test durations. As a result, we have avoided under-representing the construct and got rid of 
irrelevancies.  
 
We have used three datasets to externally validate our results. We will continue expanding the size 
and variety of our dataset going forward.  However, during our analysis to investigate the effect of 
confirmation bias on software defect density, we used data belonging to only five developers. This 
was partly because of the rapid and frequent changes in the development team. Out of 12 developers, 
only 5 of them were actively working on the project; while the rest were the newcomers and hence 
they have not started contributing to the project yet. We could not find the previous developers whose 
code commitment records were on the churn data, as most of them had left the company. In general, it 
is difficult to extract data that is informative about the defects introduced by a developer.  Usually 
small and medium sized companies do not keep file-level defect information.  Moreover, most 
companies do not classify defects according to their severity either. The data about the developers 
who contributed to a specific file, the dates of this contribution and defects related to the file differ 
from one company to another.   
 
In order to statistically validate our results, we used Mann-Whitney U Test for continuous variables 
(e.g. test severity, eliminative/enumerative index, test durations). We used Mann-Whitney U Test, 
since we do not have any prior knowledge of the distribution of these values. For categorical variables 
such as number of falsifiers, verifiers, matchers, we used Chi Square test . Chi Square test was also 
used to evaluate the significance of the distribution of the subjects according to insights by Johnson-
Laird and Wason. 

8. Conclusion and Future Work 

We have shown that there is no significant relationship between software development or testing 
experience and hypothesis testing skills. We concluded that experience did not play a role even in 
familiar situations such as problems about software domain.  

The most striking difference was found between the group of graduate students and software 
developers and testers of the companies in terms of abstract reasoning skills. The fact that students 
scored better in software-domain questions although most of them had less software development and 
testing experience indicates that abstract reasoning plays an important role in solving everyday 
problems. It is highly probable that theoretical computer science courses have strengthened their 
reasoning skills and helped them to acquire an analytical and critical point of view. Hence, we can 
conclude that confirmation bias is most probably affected by continuous usage of abstract reasoning 
and critical thinking.  

Company size was not a differentiating factor in abstract reasoning, but differences in hypotheses 
testing behavior was observed between two groups of companies grouped according to their sizes. 
The large scale company performed better in the interactive test, but it has been shown that the group 
of students outperformed this group in terms of both tests. This has led us to perform additional 
analyses and reach the conclusion that hypotheses testing skills were better in the group of students. 
Thus, we conclude that there is a relationship between confirmation bias and continuous usage of and 
training in logical reasoning and critical thinking.  



   

 

The analysis we made among developers and testers of the large scale telecommunications company, 
showed that there is a direct correlation between confirmation bias and defect proneness of the code. 
This is due to the fact that including unit testing in the development phase, all levels of software 
testing should aim to fail the code, which implies that both testers and developers should have low 
confirmation bias levels. However, in order to obtain  Statistically significant results we need more 
data.  

As future work, we intend to increase the size of our data regarding total number of defects introduced 
by each developer per lines of code changes made by that developer. Recently, we are collecting data 
from a company developing software for baking services and this data shall belong to 100 software 
developers and testers. All these data will help us to empirically analyze the effect of confirmation 
bias on software defect density to obtain statistically significant results. 
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