15,000 research outputs found

    Geometrical optics analysis of the short-time stability properties of the Einstein evolution equations

    Full text link
    Many alternative formulations of Einstein's evolution have lately been examined, in an effort to discover one which yields slow growth of constraint-violating errors. In this paper, rather than directly search for well-behaved formulations, we instead develop analytic tools to discover which formulations are particularly ill-behaved. Specifically, we examine the growth of approximate (geometric-optics) solutions, studied only in the future domain of dependence of the initial data slice (e.g. we study transients). By evaluating the amplification of transients a given formulation will produce, we may therefore eliminate from consideration the most pathological formulations (e.g. those with numerically-unacceptable amplification). This technique has the potential to provide surprisingly tight constraints on the set of formulations one can safely apply. To illustrate the application of these techniques to practical examples, we apply our technique to the 2-parameter family of evolution equations proposed by Kidder, Scheel, and Teukolsky, focusing in particular on flat space (in Rindler coordinates) and Schwarzchild (in Painleve-Gullstrand coordinates).Comment: Submitted to Phys. Rev.

    Dynamic crossover in the global persistence at criticality

    Full text link
    We investigate the global persistence properties of critical systems relaxing from an initial state with non-vanishing value of the order parameter (e.g., the magnetization in the Ising model). The persistence probability of the global order parameter displays two consecutive regimes in which it decays algebraically in time with two distinct universal exponents. The associated crossover is controlled by the initial value m_0 of the order parameter and the typical time at which it occurs diverges as m_0 vanishes. Monte-Carlo simulations of the two-dimensional Ising model with Glauber dynamics display clearly this crossover. The measured exponent of the ultimate algebraic decay is in rather good agreement with our theoretical predictions for the Ising universality class.Comment: 5 pages, 2 figure

    Simulation of time evolution with the MERA

    Get PDF
    We describe an algorithm to simulate time evolution using the Multi-scale Entanglement Renormalization Ansatz (MERA) and test it by studying a critical Ising chain with periodic boundary conditions and with up to L ~ 10^6 quantum spins. The cost of a simulation, which scales as L log(L), is reduced to log(L) when the system is invariant under translations. By simulating an evolution in imaginary time, we compute the ground state of the system. The errors in the ground state energy display no evident dependence on the system size. The algorithm can be extended to lattice systems in higher spatial dimensions.Comment: final version with data improvement (precision and size), 4.1 pages, 4 figures + extra on X

    General entanglement scaling laws from time evolution

    Full text link
    We establish a general scaling law for the entanglement of a large class of ground states and dynamically evolving states of quantum spin chains: we show that the geometric entropy of a distinguished block saturates, and hence follows an entanglement-boundary law. These results apply to any ground state of a gapped model resulting from dynamics generated by a local hamiltonian, as well as, dually, to states that are generated via a sudden quench of an interaction as recently studied in the case of dynamics of quantum phase transitions. We achieve these results by exploiting ideas from quantum information theory and making use of the powerful tools provided by Lieb-Robinson bounds. We also show that there exist noncritical fermionic systems and equivalent spin chains with rapidly decaying interactions whose geometric entropy scales logarithmically with block length. Implications for the classical simulatability are outlined.Comment: 4 pages, 1 figure (see also related work by S. Bravyi, M. Hastings, and F. Verstraete, quant-ph/0603121); replaced with final versio

    Entanglement entropy of two disjoint intervals in c=1 theories

    Full text link
    We study the scaling of the Renyi entanglement entropy of two disjoint blocks of critical lattice models described by conformal field theories with central charge c=1. We provide the analytic conformal field theory result for the second order Renyi entropy for a free boson compactified on an orbifold describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual line. We have checked this prediction in cluster Monte Carlo simulations of the classical two dimensional AT model. We have also performed extensive numerical simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor network techniques that allowed to obtain the reduced density matrices of disjoint blocks of the spin-chain and to check the correctness of the predictions for Renyi and entanglement entropies from conformal field theory. In order to match these predictions, we have extrapolated the numerical results by properly taking into account the corrections induced by the finite length of the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure

    Entanglement and particle correlations of Fermi gases in harmonic traps

    Full text link
    We investigate quantum correlations in the ground state of noninteracting Fermi gases of N particles trapped by an external space-dependent harmonic potential, in any dimension. For this purpose, we compute one-particle correlations, particle fluctuations and bipartite entanglement entropies of extended space regions, and study their large-N scaling behaviors. The half-space von Neumann entanglement entropy is computed for any dimension, obtaining S_HS = c_l N^(d-1)/d ln N, analogously to homogenous systems, with c_l=1/6, 1/(6\sqrt{2}), 1/(6\sqrt{6}) in one, two and three dimensions respectively. We show that the asymptotic large-N relation S_A\approx \pi^2 V_A/3, between the von Neumann entanglement entropy S_A and particle variance V_A of an extended space region A, holds for any subsystem A and in any dimension, analogously to homogeneous noninteracting Fermi gases.Comment: 15 pages, 22 fig

    Aging at Criticality in Model C Dynamics

    Full text link
    We study the off-equilibrium two-point critical response and correlation functions for the relaxational dynamics with a coupling to a conserved density (Model C) of the O(N) vector model. They are determined in an \epsilon=4-d expansion for vanishing momentum. We briefly discuss their scaling behaviors and the associated scaling forms are determined up to first order in epsilon. The corresponding fluctuation-dissipation ratio has a non trivial large time limit in the aging regime and, up to one-loop order, it is the same as that of the Model A for the physically relevant case N=1. The comparison with predictions of local scale invariance is also discussed.Comment: 13 pages, 1 figur

    Nonequilibrium critical dynamics of the two-dimensional Ising model quenched from a correlated initial state

    Full text link
    The universality class, even the order of the transition, of the two-dimensional Ising model depends on the range and the symmetry of the interactions (Onsager model, Baxter-Wu model, Turban model, etc.), but the critical temperature is generally the same due to self-duality. Here we consider a sudden change in the form of the interaction and study the nonequilibrium critical dynamical properties of the nearest-neighbor model. The relaxation of the magnetization and the decay of the autocorrelation function are found to display a power law behavior with characteristic exponents that depend on the universality class of the initial state.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Field-theory results for three-dimensional transitions with complex symmetries

    Full text link
    We discuss several examples of three-dimensional critical phenomena that can be described by Landau-Ginzburg-Wilson ϕ4\phi^4 theories. We present an overview of field-theoretical results obtained from the analysis of high-order perturbative series in the frameworks of the ϵ\epsilon and of the fixed-dimension d=3 expansions. In particular, we discuss the stability of the O(N)-symmetric fixed point in a generic N-component theory, the critical behaviors of randomly dilute Ising-like systems and frustrated spin systems with noncollinear order, the multicritical behavior arising from the competition of two distinct types of ordering with symmetry O(n1n_1) and O(n2n_2) respectively.Comment: 9 pages, Talk at the Conference TH2002, Paris, July 200

    Harmonic crossover exponents in O(n) models with the pseudo-epsilon expansion approach

    Full text link
    We determine the crossover exponents associated with the traceless tensorial quadratic field, the third- and fourth-harmonic operators for O(n) vector models by re-analyzing the existing six-loop fixed dimension series with pseudo-epsilon expansion. Within this approach we obtain the most accurate theoretical estimates that are in optimum agreement with other theoretical and experimental results.Comment: 12 pages, 1 figure. Final version accepted for publicatio
    corecore